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Preface

In some sense I could be classified as ‘made in Delft’. Back in 1997, just a few

days after Lady Diana’s tragic car accident, I started in Delft. I didn’t have any

idea about nanoscience or about nanotubes, even though the ‘Golden years’ in

nanotube research had just started.

Towards the end of my applied physics study I started to look around for

my ‘afstudeer’ project. A very colorful and nice looking advertisement of the

possible projects in the Quantum Transport group caught my attention. One of

these projects was about nanoelectromechanics and images of the nanoguitar and

the quantum bell were depicted on the advertisement. This is were I first met

Herre van der Zant who was considering to start projects in this direction. From

that time on Herre has been more than just a supervisor: he has been always a

good support and above all a very good friend. I thank you for all your guidance

and wish all the best with the new MED group.

The work in QT has definitely played a major role in my interest for quan-

tum dots and especially nanotube quantum dots. I think this is the best place

to thank my promotor, Mister quantum dot himself, Leo Kouwenhoven. Your

thorough understanding of many areas in physics and your quick way in recog-

nizing the interesting ’stuff’ has always impressed me enormously. I would like to

thank you for being my promotor and always showing interest in the work I did.

Furthermore, I just want to say, with focussing on the nanowires and nanotubes

you are on the right track. Forget about GaAs ;-) Also many thanks to all the

staff members Hans, Kees, Ad, Val, and Lieven for creating a group with many

possibilities and a nice atmosphere. Thanks to the technical staff (Bram, Mascha,

Remco, Raymond, Arno, Leo D, Leo L, Wim and Willem) is evertyhing running.

Yuki and Ria, thanks for all the management work.

Let me continue with the person I have worked most with. Pablo, throughout

my Ph.D. you have been an example and inspiring person to me. Me has ayudado

mucho! Good luck in New York. The switch from HiPCO to CVD nanotube

took place after the arrival of Jing Kong. She is a very nice, intelligent and

hard-working lady. The last period of my Ph.D. I have worked with the always
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friendly Carola. It was a big pleasure to work with you and wish you success

with your research in nanotubes filled with fullerenes. I would like to thank Piotr

for the nice discussions and wish him good luck in his new career. Recently,

the nanotube subgroup has grown with two new members: Georg and Gary

(’uhmm interesting’). I am sure the nanotube community will here much from

you guys! Good luck with the nanotube spin qubits. I would also like to mention

Henk Postma and Leonid Gurevich here. You guys have taught me the basics

of nanofabrication and gave me impuls at the very beginning of my QT time. I

had the pleasure of supervising Samir (good luck with your Ph.D. at MED), Jan,

Arjan, Edoardo, and Thomas with whom I should finish around the same time.

One of the highlights, from an entertainment point of view, was the ‘skiing’

conference in Mauterndorf where I went together with off-piste Hubert, Jorden,

and Silvano. Hubert, I will never forget your trick on me, when I was for the

first time on skies: ”Sami, blauw kun je makkelijk hebben”. Still I would like to

thank you and Silvano for teaching me the basics of skiing. Jorden, I wish you

all the best with your upcoming defense. And, Silvano, I am looking forward in

doing a Postdoc with you.

One of my tasks in QT was to lure students to QT. This work I did together

with other ‘PR’-members; from the old school these were Alexander, Jero, and

Ronnie and the newer members are F3 (Floris, Floor, and Franck). I have to

regretfully mention that the new PR-members have successfully changed the old

success formula: At least mention in a presentation Marco van Basten, that

Einstein was wrong and the Nobel prize.

Here I would like to seize the oppurtunity to thank some people from the

‘oude garde’: Wilfred, your ‘heilige schrift’ was always in my close proximity,

Jeroen (a very short time member of the nanotube subgroup), Ronald, Hannes,

Patrice, Günther, and Adrian.

Almost during my entire Ph.D., my office was in room ‘B(ond) 007’. The

atmosphere was always extremely pleasant. I would like to thank therefore my

office mates Yong-joo, Jonathan, Eugen, Katja and Juriaan. Eugen, after you

have left the noise level in our room (and in the group as well) went really down.

I wish the new members, Katja and Juriaan, good luck with their Ph.D..

I experienced jet-lag for the first time when I flew to Japan. I would like

to thank Abdou Hassanien and Madoka Tokumoto-san from AIST for their hos-

pitality and for inviting me there for a seminar. Abdou, your wife’s pasta was

the best remedy I have had against jet-lag. Thanks for all your help. Shukran

gazilan. At NEC in Tsukuba, Yasunubu gave me the possibility to give a talk

and arranged a tour through NEC in which I could see the TEM in which the

nanotubes were first discovered. From Regensburg I would like to thank Milena
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and Leo for their hospitality. I am sorry that I have no Luttinger liquid physics

in my thesis.

From the ‘higher’ levels of the physics building I would like to thank (the

always funny and laughing) Oleg, Alex, Omar, Wouter, Siggi, Yuli, and Yaroslav.

I enjoyed the short conversations with Yuli at the smoker’s corner, before I quit

smoking a few years ago. I hope you will follow my example and also quit at

some point. Yaroslav, I thank you for everything. You could always explain me

the physics in simple ways. I also noticed, in Göteborg, that you could explain

art just as effective.

From the MED group, I like to thank Murat, Oscar, Khashayar, Kevin, Edgar,

Peter, Alberto, Menno, Andreas, and Benoit. The last three guys I wish good

luck with the measurement of the zero-point motion of nanotubes. And Benoit,

your old measurement program is still my standard. Peter, thank you for sharing

your single electronics knowledge.

Many thanks to Cees Dekker for his interest in our research and the usage of

MB facilies. From the MB group I like to mention Koen, Iddo and Derek.

Floor and Floris’ efforts in trying to make QT a more sportive group are of

great value. I enjoy very much on monday evening to play for the Real RKC.

In Dordrecht I play soccer with AmNeDo spor and DMC. I like to thank all my

friends in these two teams.

Before finishing I would like to thank my family and friends for all their love

and support. And finally, I want to thank my wife, Zehra. Thank you for all

your help, patience and love. Seni çok seviyorum!

Sami Sapmaz

Dordrecht, May 2006
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Chapter 1

Introduction

Carbon is remarkable element which has many different stable forms ranging from

3D diamond to 2D graphite to 1D nanotubes and 0D fullerenes. In figure 1.1

these forms are shown. It is expected that new forms of carbon can be discovered

anytime since much of the carbon phase diagram remains largely unexplored.

Carbon research was already considered a mature field at the time of the

discovery of fullerenes in 1985 by the Nobel laureates Kroto, Smalley, Curl, and

co-workers [1] and at the discovery of nanotubes in 1991 by Iijima [2]. These

discoveries have given the field a boost.

The predicted remarkable one dimensionality and the quantum effects for the

electronic properties has stimulated many scientist to enter the carbon research

field. This last decade many intriguing effects with nanotubes have been observed

by research groups all over the world. Delft University has contributed in many

(especially low temperature) areas to this field as well. At low temperatures nan-

otubes exhibit most of their quantum effects such as single electron charging [3],

Luttinger liquid behavior [4], electron interference [5], Kondo effect [6], and su-

perconductivity [7] just to name a few. In this thesis we have focussed mainly on

the single electron charging and the quantum dot properties in nanotubes.

The recent progress by different groups [10] on extending nanotube quantum

dots to double quantum dots and defining them by tunable tunnelbarriers opens

up new possibilities for nanotubes. The measurement of the orbital and spin

relaxation times is one of them and will be very interesting. The orbital relax-

ation has been measured to be of the order of nanoseconds [13] in semiconductors

quantum dots. This was mainly limited by phonon emission. The spin-relaxation

time is much longer (∼ 100µs) [13] and is limited by the spin-orbit interaction in

GaAs. For nanotubes there is hope that these time scales will be much longer,

because the relaxation rate due to phonon emission is expected to be low, since

most of the nanotube phonon modes have high energies and the spin-orbit in-

1



2 Chapter 1. Introduction

Diamond Graphene Nanotube Buckyball

Figure 1.1: A few examples of the stable forms of carbon. Note the different dimen-
sionalities of the various forms. They range from 3D diamond to 2D graphene to 1D
nanotube and 0D buckyball (C60). Images are taken from ref [16].

teraction is weak as carbon is a light element. Furthermore, carbon nanotubes

should not suffer from reduced decoherence time due to the interaction between

electrons and nuclear spins as in GaAs [15], because most of the carbon atoms is
12C with zero nuclear spin magnetic moment. The research presented in the last

chapter are the first steps in our efforts towards measuring the relaxation times.
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Chapter 2

Theoretical background on carbon

nanotubes and quantum dots

2.1 Carbon Nanotubes

Carbon nanotubes can be generally divided into two classes: single and multi

walled carbon nanotubes (Fig. 2.1). The basic geometric structure of a single

walled carbon nanotube can be simply expressed in one line: A single walled

carbon nanotube is a hollow cylinder made entirely out of carbon atoms, which

are positioned on a hexagonal lattice, has a typical diameter of 1 – 2 nm and

can be centimeters long. Another way of saying roughly the same is: A single

walled carbon nanotube can be viewed as a single sheet of graphene rolled up into

a seamless hollow cylinder (Fig. 2.2). A multi walled carbon nanotube consists

of concentric cylinders with an interlayer spacing of 3.4 Å and a diameter of

typically 10 – 20 nm. In Fig. 2.1 examples of single and multi walled (3 walls)

carbon nanotubes are shown.

This basic and simple structure of a single walled carbon nanotube (in the

remaining of this chapter we will denote a single walled carbon nanotube just by

nanotube) has many fascinating properties one can’t express in a single sentence

or even in a single chapter. However, in this section we will try to give a brief

introduction to carbon nanotubes with the emphasis on electronic properties.

In 1991 the Japanese scientist S. Iijima discovered the first carbon nanotubes.

There are many types of single wall carbon nanotubes since there are many ways

to roll a graphene sheet to form a nanotube. A graphene sheet consists of a

hexagonal lattice of sp2 σ-bonds which are in the same plane with angles of 120◦.

Much of the material presented in this section are adapted from L. C. Venema et al. [1]
and P. Jarillo-Herrero et al. [2].

5



6 Chapter 2. Theoretical background on carbon nanotubes and quantum dots

Figure 2.1: (left) A Single wall carbon nanotube (SWNT) and (right) multi wall
carbon nanotube (MWNT). SWNTs are hollow cylinders with a typical diameter of
1–2 nm and are made entirely out of carbon atoms. MWNT consist of concentric
cylinders. Here we show a MWNT with 3 walls. (image MWNT: Courtesy of Tsukasa
Akasaka)

The fourth electron is in a π-orbital which has its lobes perpendicular to the plane

of the sheet. The electronic properties of both graphene and carbon nanotubes

can be well described by only taking into account the energy dispersion of the

π-electrons [3, 4, 5].

One way to construct a nanotube is shown in figure 2.2. It is sufficient to

uniquely define a nanotube by the chiral vector �C = n�a1 + m�a2, where n and m

are integers and �a1 and �a2 are the unit vectors of the hexagonal lattice. Each

(n,m) pair corresponds to a specific chiral angle, φ, and diameter, d:

φ = arccos

( √
3(n + m)

2
√

n2 + m2 + nm

)
(2.1)

d =
a

π

√
n2 + m2 + nm (2.2)

where a = |�ai| = 2.46 Å is the lattice constant. In the example of figure 2.2

the (n,m) indices are (12,4), which corresponds to a nanotube with a diameter

d of 1.13 nm and a chiral angle φ of 16.1◦. Vector �T is perpendicular to �C and

it points from (0,0) to the first lattice site through which the dashed line passes

exactly. The area defined by |�T × �C| is the primitive unit cell from which a

nanotube can be constructed.

Special symmetry directions in the graphene lattice are (n, 0) and (n, n), which

are respectively called the zigzag and armchair directions and they differ by an
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T

C

a1

a2

(0,0)

(12,4)

zigzag
(n,0)

armchair
(n,n)

�

Figure 2.2: (left) A graphene sheet that can be folded into a seamless cylinder by
cutting out the sheet along the dashed lines and rolling it up along vector �C. �a1 and
�a2 are the unit vectors of the hexagonal graphene sheet. The zigzag and armchair
lines (dotted) are special symmetry directions. The corresponding patterns along the
nanotube circumference are drawn near the dotted lines. (right) Carbon nanotubes
with different geometries. From top to bottom, an armchair (5,5), a zigzag (9,0) and a
chiral (10,5) are shown.

angle of 30◦. Rolling up a sheet along one of these directions results in a non-

chiral nanotube. Fig. 2.2 shows examples of an armchair, a zigzag and chiral

tube. The names armchair and zigzag refer to the pattern of carbon bonds

along the circumference (see Fig. 2.2). These electronic properties are found to

be critically dependent on the chirality and diameter. A (12,4) nanotube for

example is semiconducting, however, a (12,3) nanotube, which has only a slightly

different vector �C, is metallic.

In figure 2.3a, the real space geometry of graphene (a triangular Bravais lattice

with a two atom basis) is shown. There are two inequivalent sites in the hexagonal

carbon lattice, labelled A and B. All other lattice sites can be mapped onto these

two by a suitable translation using vectors �a1 and �a2. The real space unit cell

contains the two carbon atoms at A and B. Figure 2.3b shows the reciprocal space

lattice, with the corresponding reciprocal space vectors and Brillouin zone. In a

tight binding approximation, the energy dispersion for the π-electrons forming a
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a

Unit cell

b2

b1

b

a2

a1
First Brillouin

zone
A B

kx

ky

x

y

Figure 2.3: (a) Real space atomic lattice of graphene. (b) Reciprocal space lattice.
The unit cells are the area within the dashed borders. The unit vectors are �a1 =
(
√

3a
2 , a

2 ), �a2 = (
√

3a
2 ,−a

2 ) and �b1 = ( 2π√
3a

, 2π
a ), �b2 = ( 2π√

3a
,−2π

a ).

bonding (-) and antibonding (+) band can be found to be [6]:

E(kx, ky) = ±γ0

√
1 + 4 cos(

√
3kxa

2
) cos(

kya

2
) + 4 cos2(

kxa

2
), (2.3)

where γ0 ∼ 2.7 eV is the energy overlap integral between nearest neighbors.

The energy dispersion relation for graphene, E(kx, ky), is plotted in Fig. 2.4a.

Valence and conduction bands ‘touch’ each other at six points, which coincide

with the corners of the hexagonal Brillouin zone. The Fermi surface reduces thus

just to these six points. Due to this, graphene is called a semimetal, or zero band

gap semiconductor. These special points, where conduction and valence bands

meet, are called ‘K-points’. The dispersion relation near these points is conical.

Figure 2.4b shows a contour plot of the energy of the valence band states. The

circular contours around the K-points reflects the conical shape of the dispersion

relation around them. Only two of the six K-points are inequivalent (resulting

from the two inequivalent atom sites of the graphene lattice), labelled �K1 and
�K2 = − �K1. In Fig. 2.4b, the lower two K-points on the hexagon sides can be

reached from �K1 by a suitable reciprocal lattice vector translation, so they are

equivalent to �K1. Similarly, the two upper K-points are equivalent to �K2.

The electronic properties of a conductor are determined by the electrons near

the Fermi energy. Therefore the shape and position of the dispersion cones near

the K-points is of fundamental importance in understanding electronic trans-

port in graphene, and therefore in nanotubes. The two K-points, �K1 and �K2

in Fig. 2.4b have coordinates (kx, ky) = (0,±4π/3a). The slope of the cones is

(
√

3/2)γoa.
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a b

Figure 2.4: Graphene band structure. (a) Energy dispersion relation for graphene.
The valence (VB) and conduction (CB) bands meet at six points at the Fermi energy,
EF . (b) Contour-plot of the valence band states energies in (a) (darker indicates lower
energy). The hexagon formed by the six K-points (white contour points) defines the
first Brillouin zone of the graphene band structure. Outside this unit cell, the band
structure repeats itself. The two inequivalent points, �K1 and �K2 are indicated by
arrows (adapted from ref. [7]).

A nanotube is a graphene sheet folded into a cylinder. From the bandstructure

of graphene we can obtain the nanotube’s bandstructure by imposing appropri-

ate boundary conditions along the circumference. Typically, the diameters of

carbon nanotubes (∼ few nm) are much smaller than their lengths (anywhere

from hundreds of nm to several cm). As a result, there is a very large difference

in the spacing between the quantized values of the wavevectors in the directions

perpendicular, k⊥, and parallel, k||, to the tube axis. In this section, we will

regard k|| to be effectively continuous (infinitely long NTs) and consider only the

quantization effects due to the small diameter of NTs (section 2.3 will cover the

quantum effects associated to finite length CNTs, which constitute the actual

subject of this thesis).

By imposing periodic boundary conditions around the NT circumference we

obtain the allowed values of k⊥:

�C ·�k = πdk⊥ = 2πj, (2.4)

where d is the NT diameter and j is an integer number. The small diameter of

CNTs makes the spacing in k⊥ to be rather large (∆k⊥ = 2/d), resulting in strong
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Figure 2.5: Quantized one-dimensional (1D) subbands. (a) CNT and direction of
k-axis. (b) Low-energy band structure of graphene (near EF ), showing the one-
dimensional subbands of CNTs obtained by imposing periodic boundary conditions
along the NT circumference (adapted from [7]).

observable effects even at room temperature. The quantization of k⊥ leads to a set

of 1-dimensional subbands in the longitudinal direction (intersection of vertical

planes parallel to k|| with the band structure of graphene). These are shown in

Fig. 2.5b. The electronic states closest to the Fermi energy lie in the subbands

closest to the K-points. One of the most remarkable properties of CNTs becomes

apparent now: if a subband passes exactly through the middle of a dispersion

cone, then the nanotube will be metallic. If not, then there will be an energy gap

between valence and conduction bands and the nanotube will be a semiconductor.

To first approximation, all nanotubes fall into one of these categories: either

they are metallic or semiconductors. In fact, for a given (n,m) nanotube, we

can calculate n − m = 3q + p, where q is an integer and p is -1, 0 or +1 [8].

If p = 0, then there is an allowed value of k⊥ that intercepts the K-points, and

the nanotube is metallic. The Fermi velocity in metallic nanotubes determines

the slope of the dispersion cones: dE/dk = �vF , with vF ∼ 8 · 105 m/s [9]. For

p = ±1, there is no allowed value of k⊥ intercepting the K-points, resulting then

in a semiconducting nanotube (see Fig. 2.6). The closest k⊥ to the K-points

misses them by ∆k⊥ = ±2/3d, for p = ±1, respectively. This means that the

value of the band gap is: Eg = 2(dE/dk)∆k⊥ = 2γoa/(
√

3d) ∼ 0.8 eV/d[nm],
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Figure 2.6: Low energy band diagrams for carbon nanotubes around the �K1 point. (a)
For p = 0, there is an allowed value of k⊥ whose subband passes through �K1, resulting
in a metallic nanotube and band structure. (b) For p = 1, the closest subband to �K1

misses it by ∆k⊥ = 2/3d, resulting in a semiconducting nanotube with band gap Eg.
In both figures, EF refers to the value of the Fermi energy in graphene.

independent of the chiral angle. Of all carbon nanotubes, approximately 1/3 are

metallic and 2/3 are semiconducting.

It is quite remarkable that carbon nanotubes can be metallic or semicon-

ducting depending on chirality and diameter, despite the fact that there is no

difference in the local chemical bonding between the carbon atoms in the differ-

ent tubes. This fact results from an elegant combination of quantum mechanics

and the peculiar band structure of graphene.

The low energy band structure of carbon nanotubes is doubly degenerate

(at zero magnetic field). By this we mean that at a given energy there are

two different orbital electronic states that can contribute to transport (there

is also an additional two-fold degeneracy due to spin). This degeneracy has

been interpreted in a semiclassical fashion as the degeneracy between clockwise

(CW) and counter-clockwise (CCW) propagating electrons along the nanotube

circumference [10]. Within this picture, CW and CCW electrons in CNTs have

opposite classical magnetic moments associated with them, which, in the absence

of a magnetic field, are degenerate (also opposite spin states are degenerate at
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Figure 2.7: Examples of different systems with a variety of sizes and aspect ratios
behaving as quantum dots. Images are taken from Ref. [12].

zero magnetic field). This orbital degeneracy plays a fundamental role in the

transport properties of carbon nanotubes.

2.2 Quantum Dots

A quantum dot is simply a ’small’ box with a discrete set of energy states

that can be filled with electrons. Quantum mechanics tells us that electrons in a

finite size object have a discrete energy spectrum, so, in an experiment, a small

structure behaves like a quantum dot (QD) if the separation between the energy

levels is observable at the temperature we are working at. For most nanostruc-

tures this involves working at temperatures below a few Kelvin. The lifetime of

the energy levels must be long enough to be able to observe them, and this means

that the electrons must be (at least partially) confined. Because a quantum dot

is such a general kind of system, there exist QDs of many different sizes and

materials: for instance single molecules, metallic nanoparticles, semiconductor

self-assembled quantum dots and nanocrystals, lateral or vertical dots in semi-

conductor heterostructures, semiconducting nanowires or carbon nanotubes (see

for example Fig. 2.7). Quantum dots are mostly studied by means of optical

spectroscopy or electronic transport techniques. In this thesis we have used the

latter to study quantum dots defined in short segments of carbon nanotubes. But

before discussing CNT QDs, we present here a general description of electronic

This section is adapted from J.M. Elzerman et al. [11].
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Figure 2.8: Schematic picture of a quantum dot. The quantum dot (represented by a
disk) is connected to source and drain contacts via tunnel barriers, allowing the current
through the device, I, to be measured in response to a bias voltage, VSD and a gate
voltage, Vg.

transport through quantum dots.

In order to measure electronic transport through a quantum dot, this must be

attached to a source and drain reservoirs, with which particles can be exchanged.

(see Fig. 2.8). By attaching current and voltage probes to these reservoirs, we can

measure the electronic properties of the dot. The QD is also coupled capacitively

to one or more ‘gate’ electrodes, which can be used to tune the electrostatic

potential of the dot with respect to the reservoirs.

Electronic properties of quantum dots are conveniently understood using the

constant interaction (CI) model [13]. This model makes two important assump-

tions. First, the Coulomb interactions among electrons in the dot are captured

by a single constant capacitance, C. This is the total capacitance to the outside

world, i.e. C = CS + CD + Cg, where CS is the capacitance to the source, CD

that to the drain, and Cg to the gate. Second, the discrete energy spectrum is

independent of the number of electrons on the dot. Under these assumptions the

total energy of a N -electron dot with the source-drain voltage, VSD, applied to

the source (and the drain grounded), is given by

U(N) =
[−|e|(N − N0) + CSVSD + CgVg]

2

2C
+

N∑
n=1

En(B) (2.5)

where −|e| is the electron charge and N0 the number of electrons in the dot

at zero gate voltage. The terms CSVSD and CgVg can change continuously and

represent the charge on the dot that is induced by the bias voltage (through

the capacitance CS) and by the gate voltage Vg (through the capacitance Cg),

respectively. The last term of Eq. 2.5 is a sum over the occupied single-particle

energy levels En(B), which are separated by an energy ∆En = En −En−1. These
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Figure 2.9: Schematic diagrams of the electrochemical potential of the quantum dot
for different electron numbers. (a) No level falls within the bias window between µS

and µD, so the electron number is fixed at N − 1 due to Coulomb blockade. (b)
The µ(N) level is aligned, so the number of electrons can alternate between N and
N − 1, resulting in a single-electron tunneling current. The magnitude of the current
depends on the tunnel rate between the dot and the reservoir on the left, ΓL, and on
the right, ΓR. (c) Both the ground-state transition between N − 1 and N electrons
(black line), as well as the transition to an N -electron excited state (gray line) fall
within the bias window and can thus be used for transport (though not at the same
time, due to Coulomb blockade). This results in a current that is different from the
situation in (b). (d) The bias window is so large that the number of electrons can
alternate between N − 1, N and N + 1, i.e. two electrons can tunnel onto the dot at
the same time.

energy levels depend on the characteristics of the confinement potential. Note

that, within the CI model, only these single-particle states depend on magnetic

field, B.

To describe transport experiments, it is often more convenient to use the

electrochemical potential, µ. This is defined as the minimum energy required to

add an electron to the quantum dot:

µ(N) ≡ U(N) − U(N − 1) =

= (N − N0 − 1

2
)EC − EC

|e| (CSVSD + CgVg) + EN (2.6)

where EC = e2/C is the charging energy. The electrochemical potential for

different electron numbers N is shown in Fig. 2.9a. The discrete levels are spaced

by the so-called addition energy, Eadd(N):

Eadd(N) = µ(N + 1) − µ(N) = EC + ∆E. (2.7)

The addition energy consists of a purely electrostatic part, the charging energy

EC , plus the energy spacing between two discrete quantum levels, ∆E. Note

that ∆E can be zero, when two consecutive electrons are added to the same

spin-degenerate level or if there are additional degeneracies present.
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For transport to occur, energy conservation needs to be satisfied. This is

the case when an electrochemical potential level lies within the ‘bias window’

between the electrochemical potential (Fermi energy) of the source (µS) and the

drain (µD), i.e. µS ≥ µ ≥ µD with −|e|VSD = µS − µD. Only then can an

electron tunnel from the source onto the dot, and then tunnel off to the drain

without losing or gaining energy. The important point to realize is that since the

dot is very small, it has a very small capacitance and therefore a large charging

energy – for typical dots EC ≈ a few meV. If the electrochemical potential levels

are as shown in Fig. 2.9a, this energy is not available (at low temperatures and

small bias voltage). So, the number of electrons on the dot remains fixed and no

current flows through the dot. This is known as Coulomb blockade.

The charging energy becomes important when it exceeds the thermal energy,

kBT , and when the barriers are sufficiently opaque such that the electrons are

located either in the reservoirs or in the dot. The latter condition implies that

quantum fluctuations in the number of electrons on the dot must be sufficiently

small. A lower bound for the tunnel resistances Rt of the barriers can be found

from the Heisenberg uncertainty principle. The typical time ∆t to charge or

discharge the dot is given by the RC-time. This yields ∆E∆t = (e2/C)RtC > h.

Hence, Rt should be much larger than the quantum resistance h/e2 to sufficiently

reduce the uncertainty in the energy.

The Coulomb blockade can be lifted by changing the voltage applied to the

gate electrode and thus shifting the whole ’ladder’ of electrochemical potential

levels up or down. When a level falls within the bias window, the current through

the device is switched on. In Fig. 2.9b µ(N) is aligned, so the electron number

alternates between N − 1 and N . This means that the Nth electron can tunnel

onto the dot from the source, but only after it tunnels off to the drain can another

electron come onto the dot again from the source. This cycle is known as single-

electron tunneling.

By sweeping the gate voltage and measuring the current, we obtain a trace as

shown in Fig. 2.10a. At the positions of the peaks, an electrochemical potential

level is aligned with the source and drain and a single-electron tunneling current

flows. In the valleys between the peaks, the number of electrons on the dot is

fixed due to Coulomb blockade. By tuning the gate voltage from one valley to

the next one, the number of electrons on the dot can be precisely controlled.

The distance between the peaks corresponds to EC +∆E, and can therefore give

information about the energy spectrum of the dot.

A second way to lift Coulomb blockade is by changing the source-drain voltage,

VSD (see Fig. 2.9c). (In general, we keep the drain potential fixed, and change

only the source potential.) This increases the bias window and also ‘drags’ the
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Figure 2.10: Transport through a quantum dot. (a) Coulomb peaks in current
versus gate voltage in the linear-response regime. (b) Coulomb diamonds in differential
conductance, dI/dVSD, versus VSD and Vg, up to large bias. The edges of the diamond-
shaped regions (black) correspond to the onset of current. Diagonal lines emanating
from the diamonds (gray) indicate the onset of transport through excited states.

electrochemical potential of the dot along, due to the capacitive coupling to the

source. Again, a current can flow only when an electrochemical potential level

falls within the bias window. By increasing VSD until both the ground state as

well as an excited state transition fall within the bias window, an electron can

choose to tunnel not only through the ground state, but also through an excited

state of the N -electron dot. This is visible as a change in the total current. In

this way, we can perform excited-state spectroscopy.

Usually, we measure the current or differential conductance (the derivative

of the current with respect to the source-drain bias) while sweeping the bias

voltage, for a series of different values of the gate voltage. Such a measurement is

shown schematically in Fig. 2.10b. Inside the diamond-shaped region, the number

of electrons is fixed due to Coulomb blockade, and no current flows. Outside

the diamonds, Coulomb blockade is lifted and single-electron tunneling can take

place (or for larger bias voltages even double-electron tunneling is possible, see

Fig. 2.9d). Excited states are revealed as changes in the current, i.e. as peaks

or dips in the differential conductance. From such a ‘Coulomb diamond’ the

excited-state energy as well as the charging energy can be read off directly.

The simple model described above explains successfully how quantization of

charge and energy leads to effects like Coulomb blockade and Coulomb oscilla-

tions. Nevertheless, it is too simplified in many respects. For instance, the model

considers only first-order tunneling processes, in which an electron tunnels first

from one reservoir onto the dot, and then from the dot to the other reservoir. But

when the tunnel rate between the dot and the leads, Γ, is increased, higher-order
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tunneling via virtual intermediate states becomes important. Such processes,

which are known as ‘cotunneling’ [14], can be very useful in performing detailed

spectroscopy. Furthermore, the simple model does not take into account the spin

of the electrons, thereby excluding for instance exchange effects.

2.3 Nanotube Quantum Dots

Figure 2.11: Schematic picture of a carbon nanotube quantum dot. Two metal elec-
trodes, source (S) and drain (D), separated by a distance L are deposited on top of the
tube. The QD is formed in the segment of nanotube in between the electrodes, leading
to a quantized energy spectrum in the longitudinal direction. The NT is capacitively
coupled to a gate electrode (usually the back gate plane of the silicon substrate).

In section 2.1 we described the basic electronic properties of infinitely long

nanotubes. Due to the quantization of momentum in the traversal direction,

nanotubes are usually treated as one-dimensional objects. In an actual experi-

ment we measure NTs of finite length and expect therefore that quantum effects

associated with this finite length will be observable if we measure NTs with short

lengths and at low temperatures. under these conditions, the discrete levels orig-

inating from the zero-dimensional nature of the nanotubes electronic states will

manifest itself and NTs will behave as quantum dots.

When two metallic electrodes are deposited on top of a CNT, tunnel barriers

develop naturally at the NT-metal interfaces. The separation between the elec-

trodes, L, determines then the QD length (see Fig. 2.11). A finite L results in

quantized energy levels in the longitudinal direction, with an energy level sepa-

ration ∆. The strength of the NT-metal tunnel barriers determines the degree of

Parts of this section are adapted from P. Jarillo-Herrero et al. [2].
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confinement of electrons in the NT QD. For very opaque barriers, the tunnel rate

between the QD and the reservoirs, Γ, is very small, resulting in a large lifetime

of the electrons in the QD (or small energy broadening). If the barriers become

more transparent (i.e., more transmissive), the energy levels get ‘Γ-broadened’.

In order to be able to observe clearly the discreteness of the energy spectrum

for any QD it is required that hΓ < ∆. Depending on the ratio between the

lifetime broadening and the charging energy, we can distinguish three different

QD regimes (with different typical phenomena associated with them):

1. hΓ � EC (Closed QD regime)−→ Charging effects dominate transport

(Coulomb blockade).

2. hΓ ≤ EC (Intermediate transparency regime) −→ Charging effects impor-

tant, but higher-order tunneling processes significant too (cotunneling and

Kondo effect).

3. hΓ 
 EC (Open QD regime)−→ Quantum interference of non-interacting

electrons (Fabry-Perot like interference).

The experiments described in this thesis explore mainly the first regime. Only

in chapter 8 we demonstrate the tunability of the tunnelbarriers by showing

Fabry-Perot like interference (i.e. operate in regime 3).

The coupling between the NT and the metal leads depends on the contact

material, NT diameter and metallic/semiconducting character of the NT. Certain

materials, such as Ti or Au, make (generally) good contact to nanotubes (espe-

cially metallic ones). Others, like Al make pretty bad contact. It has recently

been shown that Pd and Rh are very good materials to contact NTs [15, 16, 17].

The larger the diameter, the lower the contact resistance is (on average). It is

also easier to contact metallic NTs than semiconducting ones because the latter

typically develop a Schottky barrier at the NT-metal interface. Despite these

guidelines, it is still not possible to obtain a desired contact resistance when

depositing metal on top of a CNT.

If we assume hard wall boundary conditions, then the quantized values of the

wavevector in the longitudinal direction, k||, are separated by ∆k|| = π/L. In the

case of metallic nanotubes this leads to an energy level spacing, ∆, given by

∆ =
dE

dK||
∆k|| =

hvF

2L
(2.8)

It turns out that due to the high Fermi velocity in metallic CNTs, ∆ is

actually quite large (∆ ∼ 1.7 meV/L[µm]), and, for typical L (∼ few hundreds
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of nm), the quantum behaviour of CNTs can be observed even at temperatures

of a few K. Another interesting consequence of Eq. 2.8 is that the energy level

spacing in CNT QDs is constant, i.e., independent of the number of electrons, N .

This doesn’t occur in other types of QDs, such as those defined in 2-dimensional

electron gases in semiconductor heterostructures, where the energy level spacing

becomes very small as the QDs are filled with more and more e−, and also the

spectrum becomes more complicated as N increases. A NT QD can contain

thousands of e− and still have a relatively simple spectrum. Because of their

small size, nanotubes in the closed QD regime have also rather large charging

energies (typically ∼5-20 meV). These large charging energies, large energy level

spacings and the simplicity of the spectrum make metallic NTs a very suitable

system to study QD physics.

The constant interaction model together with Eq. 2.8 for the energy spectrum

is a good starting point to analyze measurements on NT QDs in the Coulomb

blockade regime [18, 19]. However, more complete models are necessary to explain

the spectrum of NT QDs, and especially the excitation spectrum energies. The CI

model doesn’t take into account exchange effects, for example, and Eq. 2.8 doesn’t

take into account the double orbital degeneracy of the NT band structure. Below

we will explain a model proposed by Oreg et al. [20], which incorporates these

effects into the constant interaction model. In chapter 5 we use this model to

analyze our data and find remarkable agreement between theory and experiment.

In the Oreg-et al. model the Hamiltonian of the nanotube quantum dot can

be written in terms of 5 parameters: Mean level spacing ∆, the energy mismatch

δ which lifts the orbital degeneracy (Fig. 2.12), the charging energy EC , the

exchange energy J that favors spin alignment, and the excess Coulomb energy

dU to put two electrons into a single level. Here, ∆ is the mean level spacing the

quantization of

H =
∑
µ,σ,l

εlµnlµσ +
1

2
EC

(
Qdot − Qext

e

)2

+dU
∑
µ,l

nlµ↑nlµ↓+J
∑
µ,µ‘

Nµ↑Nµ′↓, (2.9)

where εl,µ = l∆+(µ−1)δ is the energy of the lth quantum level originating from

the µth subband (µ = 1, 2), Qdot is the excess charge on the nanotube, Qext is

the gate-induced charge on the dot, nlµσ is the number operator for the lth level

with spin σ in the µth subband, and Nµσ is the total number of electrons with

spin σ in the µth subband. Within this model the five parameters completely

determine the energies of all the possible spin-electronic configurations.

The electrochemical potentials and the addition energies (Fig. 2.12) can be



20 Chapter 2. Theoretical background on carbon nanotubes and quantum dots

��1

�
�

‘Shell’

Figure 2.12: In the simplest picture of a nanotube quantum dot, the quantization of
the subbands leads to two sets of spin-degenerate electronic levels with a mean spacing
∆ within each set. The energy mismatch between the sets can be represented by δ.
The addition energy ∆µ1 is defined such that it is the energy required to put one more
electron in the nanotube quantum dot, which already contains one electron in the last
occupied ‘shell’.

easily calculated from Eq. 2.9. We find for the addition energies

∆µ(1) = EC + dU + J

∆µ(2) = EC + δ − dU

∆µ(3) = EC + dU + J = ∆µ(1)

∆µ(4) = EC + ∆ − δ − dU

(2.10)

for the situation that δ > J + dU . When δ < J + dU the addition energies are

∆µ(1) = EC + δ

∆µ(2) = EC − δ + dU + 2J

∆µ(3) = EC + δ = ∆µ(1)

∆µ(4) = EC + ∆ − δ − dU.

(2.11)

2.4 Double Quantum Dots

The next logical step after studying individual quantum dots is to study sys-

tems of more than one dot. Where single quantum dots are regarded as ’artificial

atoms’, two quantum dots can be coupled to form an ’artificial molecule’. De-

pending on the strength of the interdot coupling, the two dots can form ionic-like

(weak tunnel coupling) or covalent-like bonds (strong tunnel coupling). In the

case of ionic bonding the electrons are localized on the individual dots. The

binding occurs, because a static redistribution of electrons leads to an attrac-

tive Coulomb interaction. In the case of covalent bonding, two electron states

Much of the material presented in this section is adapted from van der Wiel et al. [21].
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Figure 2.13: Network of resistors and capacitors representing two quantum dots
coupled in series.

are quantum-mechanically coupled. The main requirement for covalent binding is

that an electron can tunnel many times between the two dots in a phase-coherent

way. Here the electron cannot be regarded as a particle that resides in one par-

ticular dot, but it must be thought of as a coherent wave that is delocalized over

the two dots. The bonding state of a strongly coupled artificial molecule has a

lower energy than the energies of the original states of the individual dots. This

energy gain forms the binding force between the two dots.

The theoretical possibility to perform certain tasks in a much more efficient

way using a ’quantum computer’ instead of a ’classical computer’, has stimulated

the search for physical realizations of the basic building block of such a computer:

the quantum bit. In principle, any quantum two-level system can be used as such

a qubit. In particular, recent studies have put forward double quantum dots as

interesting candidates for realizing qubits [22]. The possibility of using double

quantum dots is an important motivation for the work presented in chapter 8.

As a first step to understanding double dot systems we introduce the stability

diagram, or honeycomb diagram. Let’s start with a purely classical description

to keep things simple. The double dot is modeled as a network of resistors and

capacitors (Fig. 2.13). The number of electrons on 1(2) is N1(2). Each dot is

capacitively coupled to a gate voltage Vg1(2) through a capacitor Cg1(2) and to

the source (S) or drain (D) contact through a tunnel barrier represented by a

resistor RL(R) and a capacitor CL(R) connected in parallel. The dots are coupled

to each other by a tunnel barrier represented by a resistor Rm and a capacitor

Cm in parallel. The bias voltage, V , is applied to the source contact with the

drain contact grounded (asymmetric bias).

In the linear transport regime (V ≈ 0) the electrochemical potential of the
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Figure 2.14: Schematic stability diagrams of the double quantum dot system for (a)
small, (b) intermediate, and (c) large inter-dot coupling. The equilibrium charge state
on each dot in each domain is denoted by (N1, N2).

two dots are (for a full derivation see Ref. [21])

µ1(N1, N2) = (N1 − 1

2
)EC1 + N2ECm − 1

|e|(Cg1Vg1EC1 + Cg2Vg2ECm)

(2.12)

µ2(N1, N2) = (N2 − 1

2
)EC2 + N1ECm − 1

|e|(Cg1Vg1ECm + Cg2Vg2EC2).

(2.13)

From the electrochemical potentials in Eqs. 2.12 and 2.13 we construct a

charge stability diagram, giving the equilibrium potentials N1 and N2 as a func-

tion of Vg1 and Vg2. We define the electrochemical potentials of the left and right

leads to be zero if no bias voltage is applied, µL = µR = 0. Hence, the equilibrium

charges on the dots are the largest values of N1 and N2 for which both µ1(N1, N2)

and µ2(N1, N2) are less than zero. If either is larger than zero, electrons escape to

the leads. This constraint, plus the fact that N1 and N2 must be integers, creates

hexagonal domains in (Vg1, Vg2)-phase space in which the charge configuration is

stable.

For completely decoupled dots (Cm = 0) the diagram looks like as in Fig. 2.14a.

The gate voltage Vg1(2) changes the charge on dot 1(2), without affecting the

charge on the other. If the coupling is increased, the domains become hexagonal

(Fig. 2.14b). The vertices of the square domains have separated into ’triple-

points’. When Cm becomes the dominant capacitance (Cm/C1(2) → 1), the

triple-point separation reaches its maximum (see Fig. 2.14c). The double dot

behaves like one dot with charge N1 + N2.

In order to obtain a measurable current, the tunnel barriers need to be suffi-

ciently transparent and at the same time the tunnelbarriers need to be sufficiently

opaque to ensure a well defined electron number on each dot. For double dots
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(a) (b)

Figure 2.15: Zoom in of triple points in the linear (a) and (b) non-linear regime. In
the non-linear regime the triple point become triangular regions whose boundaries are
determined by the applied bias voltage. If the bias voltage is large enough, multiple
discrete excited states can show up as lines inside the triangles.

coupled in series, a conductance resonance is found when electrons can tunnel

through both dots. This condition is met whenever three charge states become

degenerate, i.e. whenever three boundaries in the honeycomb diagram meet in

one point (Fig. 2.15a).

In the non-linear regime the triple points develop into triangular regions. The

conditions −|e|V = µL ≥ µ1, µ1 ≥ µ2, and µ2 ≥ µR = 0 determine the boundaries

of the triangles. In Fig. 2.15b the triple points in the non-linear transport regime

are shown. For sufficiently large bias voltage, multiple discrete energy levels can

enter the bias window. In this case, not only ground states, but also excited

states contribute to the conductance. The discrete levels manifest themselves as

resonance lines within the conductance triangles (Fig. 2.15b).

2.5 Franck-Condon Model

So far we have only considered excitations arising from the electronic structure

and quantum confinement in quantum dot systems. In chapter 7 of this thesis we

have performed measurements on suspended nanotubes and found that the vi-

brations of the nanotube quantum dot can give rise to excitations. In this section

we would like to give a brief introduction about this observation by extending

the Coulomb blockade theory to accommodate vibrational degrees of freedom of

a quantum dot. In general, the current going through a single level of a quantum

dot is simply eΓ, where Γ is the total tunnelrate. When vibrations can play a
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role, we have to take into account the vibrational part of the wavefunctions. Since

the typical electronic velocities are much larger than those of the nuclei we can

use the Born-Oppenheimer approximation to decouple the motion of the elec-

trons and the nuclei. Due to the vibrations the tunnel rates will be modified to

ΓS(D)|〈ψf |ψi〉|2, where ψi and ψf are the vibrational wavefunctions of the quan-

tum dot before and after the electron tunneling. When there is no vibrational

degree of freedom the overlap is equal to one.

If we approximate the vibrating quantum dot as a harmonic oscillator (Fig. 2.16a)

we can simply calculate the overlap between the ground and vibrationally excited

state to yield [23] the Franck-Condon factors

Pn0 = |〈ψn(x − l)|ψ0〉|2 =
gn

n!
e−g, (2.14)

where g = 1
2

(
l
l0

)2

is an important parameter which is proportional to the ratio

between the classical and quantum displacement (l0 = 1/
√

m0ω0) of the harmonic

oscillator. In Fig. 2.16b we show the effect of the Franck-Condon factors on the

current through the quantum dot for different values of g.
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Figure 2.16: (a) Sketch of a harmonic potential together with the wavefunctions.
The parabola are displaced when an electron tunnels on the dot. (b) Calculated I −V

curves at zero temperature for different values of the parameter g. The current increases
in steps every time the bias is increased by hf/e. Vc is the bias voltage required to
overcome the Coulomb-blockade.
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Chapter 3

Fabrication

The basis of a ’good’ experiment in nanoscience is a ’good’ sample. The fabrica-

tion of a ’good’ sample is not always easy. Quite often the fabrication involves

many steps. Some steps are easy and others are more difficult. However, all

the steps are crucial. The steps involved for the fabrication process of nanotube

devices can be divided into four or five main parts, depending on the required

sample. These are: (i) fabrication of markers; (ii) nanotube deposition/growth;

(iii) locate nanotubes with respect to markers and fabricate electrodes; (iv) if

needed, fabricate Al gates and SETs, and (v) room temperature characterization

and bonding. Below we will go into more detail for each fabrication part.

Fabrication of markers

In all experiments the nanotubes are grown/deposited on top of oxidized sili-

con substrates. The Si-substrates are highly doped (p-doped in our case) so that

they remain conductive at low temperatures and can serve as a backgate in our

devices. The thickness of the thermally grown oxide is typically ∼250 nm, and

isolates the devices from the back gate. A set of markers is necessary to later lo-

cate the position of the nanotubes and for the fabrication of the electrodes. These

include a set of electron beam lithography alignment markers (e-beam markers)

and atomic force microscopy (AFM) markers. The patterning of these markers

requires one e-beam lithography ‘cycle’ (Fig. 3.1), which consists of spinning a

double layer of e-beam resist, e-beam lithography, development, metal evapora-

tion and lift-off. The bottom layer of resist (poly-methyl methacrylate (PMMA)

350K 3% in chlorobencene) is thicker and more sensitive to e-beam radiation,

serves as a spacer and ensures a proper lift-off. The top resist layer (PMMA

950K 2% in chlorobencene) is less sensitive and serves as the actual mask for

metal evaporation. Once the resist is spun, a pattern is ‘written’ by irradiating

27
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heterostructure

resist

e-beam after
development

substrate

a b

dc Metal evaporation After lift-off

Figure 3.1: Schematic electron beam lithography cycle. a, Double layer of organic
resist is spun on a substrate and a predesigned pattern is irradiated with a beam of
electrons. b, After development, an opening is left in the resist. c, Metal is evaporated
on top of the substrate + remaining resist. d, The remaining resist is removed and the
metal is left at the predesigned positions.

the PMMA with a beam of electrons, which breaks the bonds in the polymer.

The ‘exposed’ resist is removed from the substrate by immersing the sample in

a developer (a 1:3 solution of methyl isobutyl ketone (MIBK) and iso-propyl al-

cohol (IPA)). Then the substrate is placed in an e-beam evaporator, where (Cr

or Ti)/Pt (5/70 nm) is evaporated. Chromium or titanium are used as sticking

layers for the platinum. We use Pt for the markers because they can withstand,

without severe deformation, the high temperatures (∼ 900 ◦C) during nanotube

growth. After metal evaporation, the unexposed resist and excess metal is re-

moved by immersing the sample in hot acetone (∼ 55 ◦C). We have observed

that further immersing the sample for ∼ 10 minutes in dichloroethane (DCE)

helps removing small amounts of PMMA residue left during the lift-off process.

After lift-off, we are left with a substrate which contains e-beam markers, AFM

markers, as well as a series of optical and numerical markers to help handling

and tagging of samples.

Carbon nanotube deposition/growth

We have used two methods to place nanotubes on the substrates: direct de-
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position from a solution, and chemical vapour deposition (CVD) growth. For

the first one we put a small amount of carbon nanotube material in a bottle

containing DCE and sonicate until the nanotube material has disentangled into

separate nanotubes (typically ∼ 30 min to 1 hour). Then a few droplets of solu-

tion are placed on a substrate and blown-dried with nitrogen. This process leaves

nanotubes all over the substrate. It is easy and fast, but it has certain disadvan-

tages, such as tuning the concentration of nanotubes, the fact that many times

the nanotubes appear in ropes and not individually, and the random location

in the deposition. Besides we have also noticed that it is harder to make good

contact to deposited NTs than to CVD-grown tubes. For these reasons, most

of our last experiments have been performed with carbon nanotubes grown by

CVD. For the catalyst, 40 mg of Fe(NO3)3·9H2O, 2 mg of MoO2(acac)2 (Sigma

Aldrich), and 30 mg of Alumina nanoparticles (Degussa Aluminum Oxide C)

are mixed in 30 ml of methanol and sonicated for ∼ 1 hr. The resulting liquid

catalyst is deposited onto the substrate with 0.5 µm2 openings in the PMMA

resist (patterned on specific known locations by e-beam lithography) and blown

dry. After lift-off in acetone, the substrate with patterned catalyst is placed in a

1-inch quartz tube furnace and the CVD is carried out at 900◦C with 700 sccm

H2, 520 sccm CH4 for 10 min. Argon is flown during heating up and cooling

down. The methane and hydrogen flows have been optimized to obtain long and

clean nanotubes (∼ 10 µm) without amorphous carbon deposition. After growth,

typically a few tubes have grown from each catalyst site and, since the catalyst

particles are patterned in known locations, the location of the nanotubes on the

substrate is also known.

Nanotube location and electrode fabrication

After the nanotube deposition/growth, the substrates are inspected by atomic

force microscopy. All our devices have ‘customized electrodes’, i.e., we design

electrodes individually for each nanotube device. While this requires a consid-

erable amount of AFM time and design compared to, for example, depositing

random grids of electrodes on the substrate, we find it very convenient in order

to contact ‘nice looking’ individual nanotubes with a given diameter and length

in between electrodes. We also typically choose straight segments of nanotubes

(to prevent multiple quantum dot formation) located on ‘residue-free’ areas, to

minimize switching behaviour. The AFM pictures determine the precise location

of the nanotubes with respect to the predefined AFM markers. We design the

electrodes on top of the desired NTs. A subsequent e-beam lithography step is

carried out to write the electrodes and evaporate the metal. The contact metal
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AFM markers

catalyst

NTs

electrodes catalyst

electrodes

individual nanotube

individual nanotube

Figure 3.2: Fabrication process. Left: scheme of a substrate with the AFM markers,
catalyst particles at predefined positions, grown nanotubes and designed electrodes.
The separation between AFM markers is 6 µm. Right: Actual AFM picture of one of
our devices.

can be Cr/Au, Ti/Au, Pd, Ti/Al, etc... depending on the type of experiment.

After lift-off, the sample is ready for optical inspection and room temperature

characterization. In some cases we etch part of the SiO2 in order to suspend the

nanotubes. This is done by immersing the samples in buffered HF for ∼ 1–2 min,

transfer to water and followed by a gentle drying in hot IPA (to prevent the col-

lapse of the nanotube due to surface tension effects).

Fabrication of gates and SETs

So far we have only described the fabrication process for the ’standard’ three

terminal nanotube devices. For making more complex device architectures addi-

tional e-beam steps are required. In the following we describe the extra fabrica-

tion steps to make nanotube double quantum dots with tunable tunnel barriers

defined by aluminium top-gates (see Fig. 3.3). The tunable tunnel barriers are

the very narrow Al top-gates. The advantage of a narrow top-gate is that it con-

trols the tunneling barrier on a local scale and only a small portion of the tube

is covered with oxide. To fabricate nanotube double dot devices we first make

Pd contacts to the tubes the same way as described above. Pd is used, because

it introduces little or no barrier at the nanotube-metal contact [1, 2, 3]. In a

subsequent electron beam lithography step we make the gate structures. First,

we evaporate a 2 nm thin layer of Al and then this layer is completely oxidized

for 10 min at 1 bar pure oxygen atmosphere. This step can be repeated to obtain
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DrainDrainDrainDrain SourceSourceSourceSource
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Figure 3.3: AFM picture of a carbon nanotube double quantum dot device. The
contacts (source and drain) are made of Pd and the gate structures of Al. The top-
gates (TGL, TGM, and TGR) create tunable tunnelbarriers and the side-gates are used
to change the electrochemical potential of the separate dots individually.

a thicker oxide. After oxidation the fabrication is continued with the evaporation

of 35 nm of Al and followed by 15 nm of AuPd.

Recently, we have started to work on placing SETs close to NT devices. This

work was inspired by the success with charge detection of our group members

working on conventional 2-DEG QDs [4, 5]. They have used a quantum point

contact (QPC) as a charge sensor [6] to measure the charge change of their dots

when the transport currents are immeasurably small. We have chosen for a SET

since it is one of the most sensitive electrometer capable of reaching sensitivities

of the order of 10−5 e/
√

Hz [7] and can be ∼ easily fabricated on the substrates

(Si on SiO2) we use with the equipment we have at our disposal (evaporator with

a rotatable stage and controlled oxidation possibility).

We fabricate the junctions, which connect the SET island with the leads us-

ing a method called shadow evaporation [8]. We spin two layer resist onto the

substrate. First layer is PMMA 350K with a thickness of 160 nm and the second

layer is PMMA 950K with 90 nm thickness. After exposure (Fig.3.4a) and de-

velopment (Fig.3.4b) in a 1:3 mixture of MIBK and IPA for 2.5 min (Fig.3.4b)

a larger area of the first layer than the second layer is removed due to the back-

scattered electrons and the different electron sensitivity of the materials. This

leads to a undercut and at certain places to a free hanging bridge which is needed

for the shadow evaporation. After defining the mask, the sample is mounted on a

rotatable sample holder. Under an angle of 15◦ we evaporate a 30 nm layer of Al

(Fig.3.4c). By exposing the Al to a controlled pressure of pure oxygen a thin layer
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Figure 3.4: Schematic overview for the fabrication of a SET. Reproduced from ref.[9]

of Al2O3 is formed (Fig.3.4d). In a subsequent evaporation step 45 nm of Al is

evaporated under an angle of -15◦. We remove the remaining resist layers and the

Al on top by immersing the sample in Acetone (Fig.3.4f). We are left with a small

overlap area of the Al layers with a very thin Al2O3 layer in between which should

act as the tunnel barrier. In Fig. 3.5 we show measurements performed on a SET.

Room temperature test and sample bonding

The devices are characterized electrically in a room temperature probe sta-

tion, where the conductance is measured versus gate voltage to determine if the

tubes are semiconducting or metallic and also how good is the contact to the
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Figure 3.5: Stability diagrams (dI/dV ) of a SET in the (a) superconducting state
and (b) normal state (B = 1 T). In (a) clear features of quasi-particle tunneling [10]
are seen. By applying a magnetic field, we destroy superconductivity and are left with
regular coulomb diamonds in (b).

nanotubes. After that, the chip is glued on a chip carrier and some selected de-

vices are bonded. The sample is ready to be connected to the low temperature

measurement setup.
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Chapter 4

Electron-hole symmetry in a

semiconducting carbon nanotube

quantum dot

P. Jarillo-Herrero, S. Sapmaz,
C. Dekker, L. P. Kouwenhoven, and H. S. J. van der Zant

Optical and electronic phenomena in solids arise from the behaviour of electrons

and holes (unoccupied states in a filled electron sea). Electron-hole symmetry

can often be invoked as a simplifying description, which states that electrons with

energy above the Fermi sea behave the same as holes below the Fermi energy.

In semiconductors, however, electron-hole symmetry is generally absent since the

energy band structure of the conduction band differs from the valence band [1].

Here we report on measurements of the discrete, quantized-energy spectrum of

electrons and holes in a semiconducting carbon nanotube [2]. Through a gate, an

individual nanotube is filled controllably with a precise number of either electrons

or holes, starting from one. The discrete excitation spectrum for a nanotube with

N holes is strikingly similar to the corresponding spectrum for N electrons. This

observation of near perfect electron-hole symmetry [3] demonstrates for the first

time that a semiconducting nanotube can be free of charged impurities, even in

the limit of few-electrons or holes. We furthermore find an anomalously small

Zeeman spin splitting and an excitation spectrum indicating strong electron-

electron interactions.

This chapter has been published in Nature 429, 389 (2004).
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Chapter 4. Electron-hole symmetry in a semiconducting carbon nanotube

quantum dot

4.1 Introduction

Carbon nanotubes can be metallic or semiconducting depending on their chiral-

ity. Electron transport through individual nanotubes has been studied for both

classes [2]. Nanotubes of finite length have a discrete energy spectrum. Anal-

ogous to studies on semiconducting quantum dots, these discrete states can be

filled with electrons, one by one, by means of a voltage applied to a nearby

gate electrode [4]. Whereas metallic nanotubes have shown clean quantum dot

(QD) behaviour [5, 6, 7], this has not been achieved in semiconducting single

wall nanotubes (SWNTs). Theory indicates that semiconducting tubes are more

susceptible to disorder than metallic ones [8, 9]. Disorder typically divides a

semiconducting nanotube into multiple islands preventing the formation of a sin-

gle, well-defined QD. Consequently, the electronic spectrum of semiconducting

SWNTs has not been resolved before.

We report here on clean semiconducting tubes and focus on the regime of a

few charge carriers (electrons or holes). We use high-purity carbon nanotubes

(HiPco [10]), which are deposited with low density on a doped Si substrate (serv-

ing as a backgate) that has an insulating SiO2 top layer [11, 12]. Individual

nanotubes are electrically contacted with source and drain electrodes (50 nm

Au on 5 nm Cr). We then suspend the nanotubes by etching away part of the

SiO2 surface [12]. We generally find that removing the nearby oxide reduces the

amount of potential fluctuations (i.e. disorder) in the nanotubes, as deduced

from transport characteristics.

4.2 A few electron-hole quantum dot

In this paper we focus on one particular semiconducting device that shows regular

single QD behaviour for both few-hole and few-electron doping. The distance

between the electrodes in this device is 270 nm (Fig. 4.1a). The dependence of the

linear conductance on gate voltage shown in Fig. 4.1c is typical for semiconducting

p and n-type behaviour [13, 14]. A low-temperature measurement around zero

gate voltage (Fig. 4.1d) shows a large zero-current gap of about 300 meV in bias

voltage, reflecting the semiconducting character of this nanotube. The zigzag

pattern outside the semiconducting gap is due to Coulomb blockade [4]. These

Coulomb blockade features are more evident in Fig. 4.1e, where a high-resolution

measurement of the differential conductance shows the semiconducting gap with

the first two adjacent Coulomb blockade diamonds.

The identification of the Coulomb diamonds for the first electron and first hole

allows for an unambiguous determination of the particle number as we continue
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Figure 4.1: Sample and characterization. (a) Atomic force microscope image of the
device before suspension (scale bar, 200 nm). (b) Device scheme: The nanotube QD is
connected to source and drain electrodes via tunnel barriers characterized by resistances
RS , RD and capacitances CS , CD. The backgate is represented by a capacitor CG. The
dc source-drain current, I, is recorded in the measurements as a function of source-drain
voltage V and gate voltage VG. Current-voltage (I −V ) characteristics are numerically
differentiated to obtain the differential conductance, dI/dV . (c) Linear conductance,
G, as a function of gate voltage, VG, at a temperature, T ∼ 150 K showing the p and
n conducting regions separated by the semiconducting gap. (d) Large-scale plot of the
current (white is zero and dark is finite current) versus both V and VG at T = 4 K. (e)
High-resolution measurement of the differential conductance as a function of V and VG

in the central region of (d) at 0.3 K. Between VG ∼ -250 and 650 mV, the nanotube
QD is depleted entirely from mobile charge carriers. As VG increases (decreases), one
electron (hole) enters the dot as indicated in the right (left) Coulomb diamond.

to fill the QD by further changing the gate voltage. Figure 4.2a shows the filling

of holes, one by one, up to 20 holes. The region for the first 2 holes is enlarged
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Figure 4.2: Few-hole semiconducting nanotube. (a) Two-dimensional colour plot of
dI/dV , vs. V and VG at T = 4 K (black is zero, white is 3µS). In the black diamond-
shaped regions the number of holes, N , is fixed by Coulomb blockade. (b) Zoom in
taken at 0.3 K of the region with 0, 1, and 2 holes (white represents dI/dV > 10 nS).
Lines outside the diamonds running parallel to the edges correspond to discrete energy
excitations. (c) Addition energy, Eadd, vs. N . Eadd is deduced from the diamond
size for positive and negative V (i.e. half the sum of the arrows in (a)). Inset, the
capacitances CS , CD and CG vs. N . (d) Calculation of the addition energy spectrum
for a semiconducting nanotube (as an example we have taken a zigzag (35,0), with
Egap ∼ 259 meV, meff = 0.037me [3]) for a harmonic potential (top) and a hard-wall
potential (bottom). The parameters for the harmonic potential are: V (x = ±135 nm) =
Egap/2 (see appendix). (e) Zeeman splitting energy, EZ , vs. magnetic field, B, for the
one hole orbital states. The data result from two different types of measurements: (i)
individual gate voltage traces at fixed bias (circles) and (ii) stability diagrams (squares,
see also appendix). Inset: g-factor as a function of N . The point for N = 1 is the
average of the data in Fig.4.2e. The points for N = 5, 7 and 9 are obtained from
co-tunneling (see appendix).
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in Fig 4.2b. The regularity in the Coulomb diamonds indicates a nanotube that

is free of disorder. A closer inspection shows that the size of the Coulomb dia-

monds varies periodically on a smooth background as the hole number increases

(Fig. 4.2c). The alternating, even-odd pattern in this addition energy, Eadd, re-

flects the subsequent filling of discrete orbital states with two holes of opposite

spin [4].

4.3 Electron-hole symmetry

We first focus on the additional discrete lines outside the Coulomb diamonds

running parallel to its edges, as for instance indicated by arrows in Fig. 4.2b.

Whereas the upper-left edge of the N -hole diamond reflects the ground state

energy of the (N+1)-hole, the extra lines located at higher voltages, V , represent

the discrete excitation spectrum for (N+1)-holes [4]. The spacing in V directly

measures the energy separation between the excitations. Such discrete spectra

were not obtained before for semiconducting nanotubes.

We now compare the excitation spectra for a particular hole (h) number with

the same electron (e) number. The left and right columns in Fig. 4.3 show the

spectra for, respectively, holes and electrons. The upper row compares the spec-

tra for 1h and 1e. The arrows in Fig. 4.3a point at the first 3 excited states for

a single hole. (Note that only lines with positive slopes are observed because of

asymmetric tunnel barriers [4].) Arrows in Fig. 4.3b indicate the corresponding

first 3 excitations for a single electron. (Figure 4.4 explains this correspondence.)

Remarkably, we have simply mirror-imaged the arrows from the hole to the elec-

tron side without any adjustment of their spacing. We thus find that the 1h

and 1e excitations occur at the same energy. Since one-particle systems are free

from particle-particle interactions, this symmetry implies that the confinement

potential for electrons is the same as for holes.

Electron-hole symmetry also survives interactions as demonstrated in the

lower rows in Fig. 4.3. Again the arrows pointing at the hole excitations have

simply been mirror-imaged to the electron side. Thus, we indeed find that the

spectra for 2h and 2e and for 3h and 3e show virtually perfect electron-hole sym-

metry in the excitation spectra. From a closer look one can see that also the

relative intensities of the excitation lines display electron-hole symmetry.

The quality of our data allows for a quantitative analysis. The addition energy

is defined as the change in electrochemical potential when adding the (N+1)

charge to a QD containing already N charges. The constant-interaction (CI)

model [4] gives Eadd = U + ∆E, where U = e2/C is the charging energy (C =
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Figure 4.3: Excitation spectra for different electron and hole numbers demonstrating
electron-hole symmetry. dI/dV is plotted versus (V, VG) at T = 0.3 K. (a), The
transition from the 0 to 1h Coulomb diamonds. (b), Corresponding transition from
0 to 1e. The white dotted lines in b are guides to the eye to indicate the diamond
edge (not visible for this choice of contrast). (c) and (d), same for 1-2h and 1-2e.
(e) and (f), Low-bias zoom in of the 1-2h and 1-2e crossings. (g) and (h), Crossings
corresponding to the 2-3h and 2-3e regions. (In (h), the current switched between two
stable positions for positive bias, with corresponding noise in dI/dV .)
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CS + CD + CG) and ∆E is the orbital energy difference between N+1 and N

particles on the QD. In the case of a semiconductor QD the addition energy

for adding the first electron to the conduction band equals U + Egap. From the

observed gap size of 300 meV and U ∼ 50 meV, we determine the semiconducting

gap Egap ∼ 250 meV, which corresponds to a nanotube diameter of 2.7 nm [3].

AFM measurements, that usually underestimate the real height [15], indicate an

apparent tube height of 1.70.5 nm.

Since two electrons with opposite spin can occupy a single orbital state, the

CI model predicts an alternating value for Eadd, where Eadd = U for N = odd,

and Eadd = U + ∆E for N = even. We indeed observe such an even-odd alter-

nation in Fig. 4.2c with average ∆E ∼ 4.3 meV throughout the entire range of

N = 1 to N = 30. Measurements of the Zeeman spin-splitting in a magnetic field

(see appendix) confirm our assignment of even-odd particle number: Lines cor-

responding to ground states for odd N split (i.e. total spin = ), whereas even-N

lines do not split (i.e. total spin = 0). Figure 4.2e shows the value of the Zeeman

energy for the one hole orbital states as a function of magnetic field. The data

yield a reduced g-factor, g ∼ 1.1, which is significantly lower than the value g = 2

reported on metallic nanotubes [5, 7]. (Some experiments on metallic nanotubes

report deviations [16].) The reduction in g-factor disappears when adding holes.

The inset shows that already for 9 holes the normal value is almost recovered.

Lower g-factors are generally due to spin-orbit coupling, but this effect is small

for carbon. It may hint at strong electron-electron interactions in the 1D-QD

(see discussion below).

The addition energy spectrum indicates ∆E ∼ 4.3 meV for consecutive states

as we fill the QD with holes. Previous spectra from metallic nanotubes have been

analysed by considering a hard-wall potential in the nanotube, with an effective

mass determined by the band structure. Our data show that this approach is

not justified for semiconducting nanotubes. Lack of effective screening in 1D and

the low number of mobile charges yield a gradual potential decay from the con-

tacts [17]. We have computed the addition energy spectrum for a semiconducting

nanotube whose gap is ∼ 250 meV for two situations (Fig. 4.2d): hard-wall and

harmonic potential of height Egap/2 at the contacts [17]. For hard walls the level

spacing increases slowly up to ∼ 1.9 meV for N = 34. In the case of a har-

monic potential, the level spacing is constant, as in the experiment, and equals

2.7 meV, in reasonable agreement with the experimental value ∼ 4.3 meV (see

also appendix ).

On top of the predicted even-odd pattern, there is a monotonic decrease of the

average charging energy with N , implying that the total capacitance is changing.

We have performed a detailed analysis of the QD electrostatics following ref. [18].
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The result is given in the inset to Fig. 4.2c. It shows that the change in C is mainly

due to an increase in CS and CD. This increase can be assigned to a decrease

of the tunnel barrier widths as |VG| increases, consistent with the simultaneous

increase of dI/dV in Fig. 4.2a,b. Indeed, dI/dV varies from (5GΩ)−1 in the first

Coulomb peak to (400kΩ)−1 at large negative VG.

The observation of electron-hole symmetry poses severe restrictions on the

QD system: the effective masses for holes and electrons should be equal and

the QD should be free of disorder. Scattering by negatively charged impurities,

for example, is repulsive for electrons but attractive for holes, so it would break

electron-hole symmetry. A symmetric band structure has been theoretically pre-

dicted for graphite materials and carbon nanotubes [3]. In contrast, the absence

of scattering has come as a positive surprise.

Figure 4.4 clarifies the correspondence between the electron and hole excita-

tion spectra. On the right side of Fig. 4.4b the situation for electrons is drawn

(for VG > 0) and on the left side for holes (for VG < 0). The resulting excitations

in transport characteristics as a function of V and VG then lead to spectra as

sketched in Fig. 4.4c and as measured in Fig. 4.3.

A detailed analysis of the excitation spectrum requires calculations that are

beyond the scope of this paper. The constant-interaction model provides the

parameter range for more exact models. The change in orbital energy when

adding a charge is given by ∆E ∼ 4.3 meV, independent of N . ∆E is the

scale for the energy difference between single-particle states. Excitations of a

smaller energy scale have to be related to interactions. The likely interactions

in semiconducting nanotubes are (1) Exchange interaction between spins (e.g.

spin = 1 triplet states gain energy from the exchange interaction). Note that

we observe an even-odd pattern, which seems to exclude ground states with

spins > 1/2. Excited states, however, can have spins > 1/2. (2) Electron-phonon

interactions. The vibrational modes in a suspended nanotube also have a discrete

spectrum, which can show up in the excitation spectra [19]. Note that vibrational

modes do not affect the addition energy spectrum of the ground states. (3)

Electron-electron interactions. The value for the interaction strength parameter

U/∆E ∼ 10. Such a large U/∆E ratio points to the presence of phenomena that

are not captured by the CI model. Luttinger liquid models developed for finite

length metallic nanotubes are not applicable to our few particle nanotubes. A

more appropriate starting point are the exact calculations for 1D QDs. In the few

particle regime the charge carriers tend to localize and maximize their separation,

thereby forming a Wigner crystal [20]. In such a Wigner state, the spectrum

consists both of high-energy single particle excitations and collective excitations

at low energy [21], similar as in our experiment. Detailed calculations beyond
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Figure 4.4: Electron-hole symmetry in semiconducting SWNTs. (a) Band structure
(energy E versus wave vector k) of a semiconducting nanotube illustrating symmetric
valence and conduction bands. Due to quantum confinement, the carriers occupy a set
of discrete energy states, shown on the left for hole doping and on the right for electron
doping. (b) Schematic energy diagrams showing transport of holes (left) and electrons
(right) across a QD. The levels for the ground state and two excited states for N = 2
are drawn. The distance between equivalent levels on the right and left is the same
due to equal effective electron and hole masses. The top hole level is accessed from the
left for V > 0, whereas the top electron level aligns with the left lead Fermi energy
for V < 0. The dotted line in the potentials shows the effect of a negatively charged
scatterer, which breaks electron-hole symmetry. (c), Excitation spectra resulting from
the energy diagrams in (b). New levels entering the bias window due to excited states
lead to lines in the dI/dV plots that run parallel to the diamond edges. (Note that
due to asymmetric barriers, only excitation lines with positive slope become visible.)
These diagrams can be compared to the experiment in sec. 4.3.

the CI model and a comparison with the experimental results are necessary to

establish the precise effect on transport from these interactions.
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4.4 Appendix

This appendix contains additional discussion and data, and was published as

Supplementary Information to the main text in the corresponding publication

(see Chapter title’s page).

Model calculations

In the main text we show model calculations of the addition energy, Eadd, for

two types of electrostatic potential in the nanotube: hard-wall versus a parabolic
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p-doped
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Figure 4.5: Band diagram scheme in the nanotube for negative (a) and positive (b)
gate voltage.

potential (Fig. 4.2d). In both cases, we assume a zigzag (n,m) = (0,35) nan-

otube (taken such that the theoretical band gap, Egap ∼ 259 meV, is close to

the experimental value Egap ∼ 250 mV). From the band structure of this nan-

otube we obtain meff ∼ 0.037me (ref. [3] main text). The effective mass, meff ,

is an important parameter for the value of the level spacing. We note that

meff is the same for a given semiconducting gap and approximately independent

of chirality. In the case of a hard-wall potential, the level spacing is given by

∆En = En − En−1 = h2π2(2n − 1)/2meffL
2, where L is the length of the nan-

otube. This value of ∆En increases with n, which is not observed in the data. In

contrast, for a harmonic potential, the level spacing is constant, and equal to �ωo.

We determine �ωo by requiring the potential height at the nanotube edges to be

equal to half the band gap, Egap/2 = 1/2meffω
2
o(L/2)2. The important point is

that the potential is gradually decaying into the nanotube (ref. [17] main text, see

Fig. 4.5 for a scheme of the band diagram in the nanotube for both negative and

positive gate voltages). We find that only experimentally determined parameters

(Egap and L) enter the model calculations. To simulate the monotonic decrease of

the charging energy with N , we have fitted the odd values of the addition energy

[Eadd(Nodd) = U ]. Then Eadd(N + 1) = U(N + 1) + ∆En, with (N + 1) = even.

We note that we keep the harmonic potential constant as we fill the QD with

holes. Screening will start to play a role as we add more and more charges to

the nanotube and will gradually change the harmonic potential into a hard-wall

potential. Moreover, in the calculations we have included spin degeneracy for

each orbital state and an extra factor of 2 to account for the two 1D modes in

the nanotube.

Scattering and disorder

Here we show additional data from another semiconducting device which
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shows regular quantum dot behaviour and where the discrete spectrum can be

discerned. We discuss also the importance of disorder. The symmetry in the

electron-hole excitation spectrum (Fig. 4.3) shows that there is absence of sig-

nificant charged scatterers in the device as discussed in the main text. This is

especially important since semiconducting nanotubes are much more sensitive to

disorder than metallic ones. It should also be noted that the diameter of the nan-

otube described in the main text is rather large. It is known that large diameter

nanotubes are less sensitive to disorder than small diameter ones [22]. For com-

parison, we show additional data corresponding to a CVD-grown, non-suspended

semiconducting nanotube. The estimated band gap is ∼ 800 meV (correspond-

ing to ∼ 1 nm diameter). Fig. 4.6a shows the few-hole Coulomb diamonds (the

current is plotted in log-color scale) in the p-doped region at T = 4 K, next to

the semiconducting gap. The number of holes could not be exactly determined.

For N ≥ 6 − 8 the nanotube exhibits single quantum dot behaviour. However,

the pattern becomes irregular as the quantum dot is near full depletion. This is a

general feature of most of the studied semiconducting devices. We believe that as

the QD is depleted, the holes or electrons tend to localize due to a lack of screen-

ing of the disorder potential, consequently forming multiple islands. Fig. 4.6,

b and c, show Coulomb diamonds (differential conductance) deep in the p-side

(Nh ∼ 100) and in the n-side (Ne ∼ 40) at T = 300 mK for the same device

a

b c

p-side

p-side n-side

gap

Figure 4.6: Differential conductance plot for a different semiconducting nanotube
device. (a) Few hole regime. (b) Large hole number regime. (c) High electron number
regime.
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ductance plot in the 1-2 electron region at zero field. (b) Same as (a) but at B = 4.2
T. (c) Zeeman splitting in the inelastic cotunneling regime.

in a different cool down. The discrete spectrum is very clearly visible. We can

conclude, then, that single QD behaviour can be observed in semiconducting nan-

otubes both in the few-charge carrier regime (main text) and in the regime with

many particles (Fig. 4.6, b and c). In order to study clean nanotubes in the few

charge-carriers regime, it may be important to select large diameter nanotubes.

We have observed in other (metallic) samples that also suspending the nanotubes

yields in general more stable devices. This seems to be an advantage also in the

case of semiconducting nanotubes.

Zeeman splitting

We show here dI/dV versus (V, VG) at low energies in the 1-2 holes region
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at zero (Fig. 4.7a) and finite (Fig. 4.7b) magnetic field, showing the Zeeman

splitting for N = 1. For N = 2 no Zeeman splitting is observed, as expected. We

have performed an analysis of the inelastic cotunneling data (raw data shown in

Fig. 4.7c) in a magnetic field [23], from which we obtain the g-factor as we increase

the number of holes. (Note that the Zeeman splitting can be observed only for Nh

= odd.) We have data for N = 5, 7 and 9, where the onset of inelastic-cotunneling

is clearly observable. These are plotted in the inset to Fig. 4.2e.
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Chapter 5

Electronic excitation spectrum of

metallic carbon nanotubes

S. Sapmaz, P. Jarillo-Herrero, J. Kong,
C. Dekker, L. P. Kouwenhoven, and H. S. J. van der Zant

We have studied the discrete electronic spectrum of closed metallic nanotube

quantum dots. At low temperatures, the stability diagrams show a very regular

four-fold pattern that allows for the determination of the electron addition and

excitation energies. The measured nanotube spectra are in excellent agreement

with theoretical predictions based on the nanotube band structure. Our results

permit the complete identification of the electron quantum states in nanotube

quantum dots.

This chapter has been published in Physical Review B 71, 153402 (2005).

51
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5.1 Introduction

Since their discovery [1] carbon nanotubes (NTs) have emerged as prototypical

one-dimensional conductors [2]. At low temperatures, NT devices form quantum

dots (QDs) where single-electron charging and level quantization effects domi-

nate [3, 4]. A continuous improvement in device fabrication and NT quality has

enabled the recent observation of two-electron periodicity in ’closed’ QDs [5] and

four-electron periodicity in ’open’ single- and multi-wall NT QDs [6, 7]. The-

oretically, the low-energy spectrum of single wall nanotube (SWNT) QDs has

been modeled by Oreg et al., [8]. Experiments on open NT QDs are compatible

with this model, but the presence of the Kondo effect and broadening of the en-

ergy levels prevents the observation of the full spectrum [9]. An analysis of the

electronic excitations is therefore still lacking.

The two-fold degenerate, low-energy band structure of a metallic SWNT is

schematically shown in Fig. 5.1a. Quantization along the nanotube axis leads to a

set of single particle states that are equally spaced because of the linear dispersion

relation [10]. The combination of the two bands and the spin yields a four-fold

periodicity in the electron addition energy. The simplest model to describe QDs

is the Constant Interaction (CI) model [11], which assumes that the charging

energy is constant and independent of the occupied single particle states. To

describe NT QDs the CI-model has been extended [8] to include five independent

parameters: the charging energy EC , the quantum energy level separation ∆,

the subband mismatch δ (see Fig. 5.1a), the exchange energy J and the excess

Coulomb energy dU . Fig. 5.1c illustrates the meaning of the last two parameters.

An independent verification of the Oreg model [8] requires the observation of the

ground state addition energies and of, at least, two excited states. Such a study

has not been reported.

Here we investigate the excitation spectrum of closed SWNT QDs. Not only

the ground but also the complete excited state spectrum of these QDs has been

measured by transport-spectroscopy experiments, enabling us to determine all

five parameters independently. With these, the remaining measured excitation

energies are well predicted leading to a complete understanding of the spectrum,

without adjustable parameters.

5.2 Four-fold shell filling

HiPco [12] and CVD [13] grown NTs were used for the fabrication of the devices.

HiPco tubes were dispersed from a dichloroethane solution on an oxidized, p-

doped Si substrate. The CVD nanotubes were grown from catalyst particles on
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Figure 5.1: (a) Low-energy band structure of a metallic SWNT. In a finite length
SWNT, the wave vector k is quantized along the tube axis which leads to a set of
quantized energy levels separated by ∆ in each band. δ is the mismatch between the
two bands. (b) Schematic diagram of the device geometry. (c) Meaning of J (left) and
dU (right). The exchange energy favors spin alignment and dU is the extra charging
energy associated with placing two electrons in the same energy level. (d), (e), and (f)
Conductance as a function of gate voltage in the linear response regime at 4 K for three
different CVD grown samples. The NT lengths are 500, 680 and 760 nm, respectively.

predefined positions. Individual NTs were located by atomic force microscopy

(AFM) with respect to predefined marker positions and electrodes were designed

on top of straight segments of NTs. The highly doped silicon is used as a backgate

to change the electrostatic potential of the NT QD (see Fig. 5.1b). We have

fabricated NT devices with lengths in between contacts, L, varying from 100 nm

to 1 µm.

Four-electron shell filling has been observed in over 15 samples. In some

cases the four-fold pattern extended over more than 60 electrons added to the

QD. Figs. 5.1d-f show representative examples of Coulomb Blockade (CB) oscilla-

tions [14] in the linear response regime. Clearly, the Coulomb peaks are grouped

in sets of four reflecting the two-fold character of the NT bandstructure.

In the following, we focus on three different devices exhibiting similar four-

fold periodicity in CB oscillations. These samples (A, B and C) had high enough

contact resistances so that not only the electron ground states but also their

excited states could be resolved. Together they provide enough information to
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determine all the parameters in the model. We discuss the results of these three

samples separately.

5.3 HiPCO nanotubes

Sample A- This device is made from a HiPco NT [12] with L = 180 nm and

a diameter of 1.1 nm as determined by AFM. It is contacted by evaporating

Cr/Au (5/75 nm) electrodes. Fig. 5.2a shows the current, I, as a function of

source-drain bias voltage, V , and gate voltage, VG. In the light-colored diamond-

shaped regions, the current is blocked due to CB and the number of electrons is

fixed. The clear four-fold periodicity makes it possible to assign the number of

electrons in the last occupied shell. The sizes of the diamonds form an interest-

ing pattern, namely a repetition of small/medium/small/big. This pattern is a

consequence of the large subband mismatch compared to the exchange energy, as

we show below.

The addition energy is defined as the change in electrochemical potential

(∆µN) when adding the (N + 1) charge to a quantum dot already containing N

charges [11]. The addition energy is obtained by multiplying the diamond width,

∆VG, by a conversion factor, α (≈ 0.017), which relates the gate voltage scale to

the electrochemical potential [14].

The Oreg-model yields the following equations for the addition energy of the

N -th electron added [15]:

∆µ1 = ∆µ3 =EC + dU + J (5.1)

∆µ2 =EC + δ − dU (5.2)

∆µ4 =EC + ∆ − δ − dU. (5.3)

To extract all five parameters, two more equations are needed. These are pro-

vided by the excitation spectrum. In Fig. 5.2c we show the numerical derivative

of Fig. 5.2a (i.e., the differential conductance) for the first group of four. Excited

states of the electrons are visible for all diamonds. The value of a particular

excitation energy equals the bias voltage at the intersection between the excita-

tion line and the Coulomb diamond edge (see Fig. 5.2c). The dotted arrows in

diamond one and two in Fig. 5.2c correspond to the first excitation for one and

two electrons extra on the NT QD respectively. The theoretical values of these

two energies are

∆µex
1 = δ, ∆µex

2 = δ − J − dU. (5.4)
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Figure 5.2: Sample A (a) Current as a function of V and VG at T = 300 mK. Current
goes from −40 nA to +40 nA. (b) Values of the parameters for three different groups
of four (see text). (c) The differential conductance (dI/dV ) for the first group from
(a). Black is zero and bright is >12 µS. Lines running parallel to the diamond edges
correspond to discrete energy excitations. The excitation energies corresponding to
the dotted arrows have been used to deduce the model parameters. The predicted
excitations are indicated by normal arrows. (d) Calculated spectrum for sample A.
The black X’s correspond to the normal arrows in (c) and grey X’s corresponds to the
dotted arrow. The diagrams indicate the ground state spin filling.

Equations (5.1)-(5.4) allow us to uniquely determine the five unknown param-

eters from the experimental data alone. We find EC = 4.3 meV, ∆ = 9.0 meV,

δ = 3.2 meV, J = 0.4 meV and dU ≈ 0 meV. The values of the parameters

do not vary significantly between the different groups, as shown in Fig. 5.2b.

The theoretically expected value for the level spacing is ∆ = hvF /2L [3]. With

vF = 8.1 · 105 m/s [16] and L = 180 nm, we find 9.3 meV in excellent agreement

with the experimental value.

Figure 5.2d shows the calculated spectrum of the NT QD using the param-

eters deduced from the experiment. Some excitations are split by the exchange

energy. The stars in the calculated spectrum correspond to the arrows in the ex-

perimental data. The excitations denoted with gray X’s were used for obtaining

the parameters and correspond to the dotted arrows in Fig. 5.2c . The calculated

spectrum resembles the measured one strikingly well.
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5.4 CVD nanotubes

Sample B - This sample is CVD grown [13] with a diameter of 1.3 nm and L =

500 nm defined by Cr/Au contacts (5/40 nm). After contacting, the entire NT

segment in between electrodes is suspended by etching away part of the SiO2 [17].

We have measured the differential conductance, dI/dV , as a function of V and

VG at 300 mK (Fig. 5.3a). Again regular four-fold patterns are visible in the

Coulomb diamonds.

The evolution of the Coulomb peaks as a function of the magnetic field (not

shown here) gives information about the spin filling of the states [18]. We find

that the filling is the same as sample A. Excited states of the QD are visible in

all groups of four. The model parameters have been extracted using the same

analysis as described above. The result is shown in Fig. 5.2b. The average values
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Figure 5.3: Differential Conductance of sample B (a) and C (c) as a function of V and
VG measured at 300 mK. Black represents dI/dV ∼ 0, while lighter tones correspond
to a higher conductance. Dashed lines in (c) indicate the excited states together with
inelastic cotunneling. (b) Obtained parameters for sample B. (d) Electron quantum
states of the NT QD. The numbers on the left denote the ground state (GS) number
of electrons in the last occupied shell. The left column indicates the GS electron con-
figuration (note that the two-electron GS is degenerate). Columns on the right denote
the excited state (ES) configuration. Up to four ES are visible in the large Coulomb
diamonds [22]. The dotted arrow in the second ES for one electron corresponds to an
electron excited from the lower shell.
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are EC = 2.0 meV, δ = 1.2 meV, J = 0.1 meV, dU = 0.2 meV and ∆ = 3.0 meV.

The value of ∆ corresponds to a length of 440 nm [3], in good agreement with

the NT length between contacts. Furthermore, in all groups of four at least one

more excitation remains for a comparison between theory and experiment. In all

cases we find good agreement [19].

Sample C - This NT is CVD grown [13] with a diameter of 2.7 nm and L =

750 nm. The contacts are made by evaporating Ti/Au (20/40 nm). Fig. 5.3c

shows dI/dV as a function of V and VG. A very regular pattern of Coulomb

diamonds with four-fold periodicity is displayed together with the excited states.

In addition, up to three inelastic co-tunneling lines [20] are visible (horizontal

lines inside the Coulomb diamonds in Fig. 5.3c).

The observation of three equally sized small diamonds and the fact that the

excitations have the same energy for all four charge states indicate that δ ≈
J + 2dU . We find EC = 6.6 meV, ∆ = 8.7 meV, δ ≈ J = 2.9 meV, and

dU ≈ 0 meV. Theoretically a level separation of 8.7 meV indicates a NT QD

length of ∼ 200 nm, while the distance between contacts is 750 nm. This may

suggest that sample C consists of a QD with NT leads connecting it to the

contacts. This is consistent with the large value for EC . Remarkably, all the

predicted excitation lines are present in the spectrum [21]. Therefore all the

electron states can be assigned (Fig. 5.3d).

In summary, we have presented a complete analysis of the electronic spectrum

in closed NT QDs. Samples with different lengths, production process (CVD

and HiPco) and contact material all exhibit four-fold periodicity in the electron

addition energy. The very regular Coulomb traces and stability diagrams enable

the determination of the ground and excited state electron energies. Knowing

precisely the spectrum of nanotube quantum dots is of fundamental importance in

experiments involving the application of high frequency radiation such as photon-

assisted tunneling and coherent control of the electron quantum states.

We thank R. E. Smalley and coworkers for providing the high-quality HiPco

nanotubes, and C. Meyer, W. Wetzels, M. Grifoni, R. Hanson, K.A. Williams, Yu.

V. Nazarov and S. De Franceschi for discussions. Financial support is obtained

from the Dutch organization for Fundamental Research on Matter (FOM).
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Chapter 6

Carbon nanotubes as

nanoelectromechanical systems

S. Sapmaz, Ya. M. Blanter, L. Gurevich, and H.S.J. van der Zant

We theoretically study the interplay between electrical and mechanical properties

of suspended, doubly clamped carbon nanotubes in which charging effects dom-

inate. In this geometry, the capacitance between the nanotube and the gate(s)

depends on the distance between them. This dependence modifies the usual

Coulomb models and we show that it needs to be incorporated to capture the

physics of the problem correctly. We find that the tube position changes in dis-

crete steps every time an electron tunnels onto it. Edges of Coulomb diamonds

acquire a (small) curvature. We also show that bistability in the tube position

occurs and that tunneling of an electron onto the tube drastically modifies the

quantized eigenmodes of the tube. Experimental verification of these predictions

is possible in suspended tubes of sub-micron length.

This chapter has been published in Physical Review B 67, 235414 (2003).

61
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6.1 Introduction

Nanoelectromechanical systems (NEMS) convert electrical current into mechan-

ical motion on a nanoscale and vice versa. They can be viewed as the succes-

sors [1] of microelectromechanical-devices (MEMS) which operate at a micron

scale and which are found in commercial applications. Improved performance is

expected from NEM-devices due to their small sizes, and higher eigenfrequen-

cies. M(N)EMS have already been used for high-precision measurements of force

[2], electric charge [3], the thermal conductance quantum [4], and the Casimir

force [5]. ¿From a fundamental point of view, NEM-physics is an unexplored

field in which new phenomena are likely to be found. Examples include tun-

neling through moving barriers [6], additional sources of noise [7], and shuttling

mechanism for transport [8, 9, 10].

Studies with NEMS have mostly been performed in devices made with sili-

con technology. Carbon nanotubes provide an interesting alternative because of

their superior mechanical properties. They have already been implemented as
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Figure 6.1: A schematic drawing of a suspended nanotube capacitively coupled to a
gate and clamped on both sides to metal pads that serve as tunnel contacts. A voltage
V is applied to the left pad.
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nanotweezers [11, 12], as switches in a random access memory device [13], or as

nanoscale actuators [14]. In addition, recent theoretical calculations show that

carbon nanotubes can also be used as nanoelectromechanical switches [15, 16] or

as gigahertz oscillators [17].

In this chapter, we study theoretically nanoelectromechanical effects in doubly-

clamped suspended carbon nanotubes. Doubly-clamped suspended single- and

multi-wall carbon nanotubes have been previously fabricated, and their trans-

port [18, 19, 20, 21], acoustoelectric [22], thermal [23], and elastic [24] proper-

ties have been measured. We consider a single-wall carbon nanotube (SWNT)

in which Coulomb-blockade effects dominate transport, and demonstrate that a

gate manipulates the tube in an effective way. The applied gate voltage bends

the tube, changes the stress and thus influences the electric and mechanical prop-

erties.

This chapter is organized as follows: The next Section describes the model

with inclusion of the influence of initial stress and thermal fluctuations. We con-

centrate on the case where the junction capacitances are zero so that analytical

expressions are obtained. Section 6.3 describes the influence of nanoelectrome-

chanical effects on Coulomb blockade and shows that intrinsic bistability occurs

when the tube is strained. Section 6.4 discusses the eigenmodes and the influence

on the initial strain on them. In Section 6.5 junction capacitances are no longer

neglected and we also show the effect of a non-uniform charge distribution. We

end with some remarks on the limitations of our model.

6.2 Displacement, stress, and energy

6.2.1 Equilibrium position

We consider a SWNT (modeled as a rod of length L along the x-axis), freely

suspended between source and drain electrodes, in the vicinity of a gate (see

Fig. 1). The nanotube is attached to the electrodes via tunneling contacts. An

electrostatic force (gate voltage) bends the tube; the deviation from a straight

line is denoted by z(x) with 0 < x < L. The elastic energy of the bent tube

is [25]

Wel[z(x)] =

∫ L

0

dx

{
EI

2
z′′2 +

[
T0

2
+

ES

8L

∫ L

0

z′2dx

]
z′2

}
, (6.1)

where E, I = πr4/4, and S = πr2 are the elastic modulus, the inertia moment

and the cross-section, respectively. Here, r is the (external) radius of the tube.

The first term in Eq. (6.1) is the energy of an unstressed bent rod; the two other
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terms describe the effect of the stress force T̃ = T0 + T . Here T0 is the residual

stress which may result e.g. from the fabrication, and the induced stress T is due

to the elongation of the tube caused by the gate voltage,

T =
ES

2L

∫ L

0

z′2dx. (6.2)

To write down the electrostatic energy, we denote the capacitances of the

barriers connecting the nanotube with the source and drain as CL and CR, re-

spectively (see Fig. 1). The capacitance to the gate per unit length is c(z).

Approximating the gate by an infinite plane at a distance R from the nanotube,

we obtain

c(z) =
1

2 ln 2(R−z)
r

≈ 1

2 ln 2R
r

+
z(x)

2R ln2 2R
r

, (6.3)

where the Taylor expansion restricts validity to z � R. In this limit van der

Waals forces between the nanotube and the substrate can be neglected. The

electrostatic energy of the system reads

West[z(x)] =
(ne)2 − 2ne(CLV + CGVG)

2(CL + CR + CG)
(6.4)

−CL(CR + CG)V 2 + CG(CL + CR)V 2
G − 2CLCGV VG

2(CL + CR + CG)
,

where V and VG are the potentials of the source and the gate respectively (the

drain potential is set to zero), ne is the (quantized) excess charge on the nanotube,

and for a uniform charge distribution the capacitance to the gate equals

CG =

∫ L

0

c[z(x)]dx.

Note, that the last term in Eq. (6.4) depends on the tube displacement and thus

on the number of electrons. Therefore, it can not be omitted as in the standard

Coulomb blockade treatment that replaces this term by a constant making West

a periodic function of gate voltage.

In the following, we concentrate on the analytically tractable case CL, CR = 0.

The general case is considered in Section 6.5. For a moment, we also assume

T0 = 0. In this situation, the expression for the electrostatic energy simplifies,

West[z(x)] =
(ne)2

2CG[z]
− neVG

≈ (ne)2 ln 2R
r

L
− (ne)2

L2R

∫ L

0

z(x)dx − neVG. (6.5)
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Minimizing the energy,

Wn[z(x)] = Wel[z(x)] + West[z(x)],

with respect to z, one finds the equation determining the tube position [25],

IEz′′′′ − Tz′′ = K0 ≡ (ne)2

L2R
, (6.6)

where K0 is the electrostatic force per unit length, which we approximate by a

constant. Higher-order terms are small for z � R. To solve Eq. (6.6) we have to

assume that the stress force T is constant, and find it later from the self-consistent

condition (Eq. (6.2)).

The solution of Eq. (6.6) with the appropriate boundary conditions (for the

doubly-clamped rod z(0) = z(L) = z′(0) = z′(L) = 0) has the form

zn(x) =
K0L

2Tξ

[
sinh ξL

cosh ξL − 1
(cosh ξx − 1) − sinh ξx

+ ξx − ξ
x2

L

]
, ξ =

√
T

EI
. (6.7)

Substituting this into Eq. (6.2), a relation between the stress T and the external

force K0 is obtained. In the limiting cases, it reads

T =

{
K2

0L
6S/(60480EI2), T � EI/L2,

(ES/24)1/3(K0L)2/3, T 
 EI/L2.
(6.8)

The first line corresponds to weak bending of the tube: The energy associated

with the bending exceeds the energy of the stress. Generally, it is realized for

z � r. The second line describes strong bending, when the tube displacement is

large (r < z � R, L).

For the displacement of the tube center zmax
n = zn(L/2) we find

zmax
n = 0.003 (ne)2L2

Er4R
, T � EI

L2

(
n � Er5R

e2L2

)
;

zmax
n = 0.24 (ne)2/3L2/3

E1/3r2/3R1/3 , T 
 EI
L2

(
n 
 Er5R

e2L2

)
.

(6.9)

For a SWNT with r = 0.65 nm, E = 1.25 TPa, L = 500 nm and R = 100 nm

(to be referred to as the E-nanotube) the crossover from weak to strong bending,

T ∼ EI/L2, occurs already at n ∼ 5 ÷ 10. In the strong-bending regime, the

displacement of the E-nanotube is (in nanometers) zmax
n = 0.24n2/3. Note that

this regime is not accessible with state-of the art silicon submicron devices, which

are always in the weak-bending limit.
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Figure 6.2: Calculated displacement as a function of gate voltage for the E-nanotube:
r = 0.65 nm, E = 1.25 TPa, L = 500 nm and R = 100 nm. At VG ≈ 0.5V , there is
a crossover from weak bending with a V 2

G-dependence to strong bending with a V
2/3
G

dependence.

6.2.2 Charge and energy

For comparison with experiments, we have to relate the charge ne to the gate

voltage by minimizing the energy. The expression for the energy (elastic plus

electrostatic) of the tube at equilibrium in the limiting cases reads

W eq
n ≡ Wst − δW =

(ne)2

L
ln

2R

r
− neVG (6.10)

−
{

0.0009(ne)4L/(Er4R2), T � EI/L2;

0.08(ne)8/3/(Er2R4L)1/3, T 
 EI/L2.

The first two terms represent the electrostatic energy of a straight tube, and the

third one is due to the elastic degrees of freedom (stress, bending, and change

of CG due to displacement). This nonlinear, nanomechanical term is typically

a small correction: For the E-nanotube it becomes of the same order as Wst if

n ∼ 3000 in which case Eq. (6.3) is not valid anymore. The negative sign of the

nanomechanical contribution is easily understood: As the gate voltage changes,

the movable tube adjusts not only its charge, but also its position, which leads

to a lower energy as compared to the fixed-position system.
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The value of n which minimizes the energy is

n = Int

(
VGL

2e ln(2R/r)
+

1

2
+ δn

)
,

with Int denoting the integer part of the expression. The small correction δn in

the strong-bending regime is proportional to V
5/3
G . Thus, the tube displacement

zmax changes in discrete steps when VG is varied as shown in Fig. 2. The envelope

is proportional to V 2
G (weak bending) or V

2/3
G (strong bending). In the absence

of charging effects and tension, the displacement is given by the dashed line as

previously found in simulations of Ref. [15].

6.2.3 Thermal fluctuations

The preceding considerations are restricted to the case of zero temperature. To

understand the role of the temperature, we now evaluate the effect of thermal

fluctuations on the equilibrium position of the tube.

The variance of the position of the tube center at a given charge n can be

generally represented as a functional integral,

var zn ≡ 〈
[z(L/2) − zn(L/2)]2

〉
=

∂2

∂J2

∫
Dz(x) exp [−Wn[z]/kBΘ + Jz(L/2)]

∣∣∣∣
J=0

×
[∫

Dz(x) exp (−Wn[z]/kBΘ)

]−1

, (6.11)

where Θ is the temperature. Except for n = 0, the functional integral in Eq.

(6.11) is not Gaussian and has to be linearized around the equilibrium solution

zn(x), Eq. (6.7). The remaining Gaussian integral can be calculated, and we

arrive at

var zn = kBΘζ(L/2), (6.12)

where ζ(x) solves the equation

EIζ ′′′′ − ES

2L

∫
z′2n dx ζ ′′ − ES

L
z′′n

∫
ζ ′z′ndx = δ(x − L/2). (6.13)

In the two limiting cases of weak and strong bending, the solution of Eq.

(6.13) yields

var zn =

{
kBΘL3/192EI, n = 0

kBΘL/8T, n 
 Er5R/e2L2 , (6.14)
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where the stress T is still given by the lower line of Eq. (6.8). Thus, the fluc-

tuations in the tube position are expected to grow linearly with temperature.

However, their magnitude is small. For the E-nanotube, at 100K the fluctuations

in the n = 0 state are of the order of 0.1 nanometer, and at least an order of

magnitude less in the strong-bending regime.

In the calculations, we have assumed that the charge ne is a fixed quantity.

Close to the degeneracy points W eq
n = W eq

n+1 thermal fluctuations may induce

switching between the states with charges ne and (n + 1)e, in which case Eq.

(6.14) is no longer valid. However, the range of voltages where switching is

important, is narrow.

6.3 Coulomb effects and bistability

6.3.1 Coulomb blockade

Since the nanotube is attached to the electrodes by tunneling contacts, it is in

the Coulomb blockade regime. We define the energy to add the nth electron to

the tube as Sn = Wn−Wn−1. Then, if the nanotube contains n > 0 electrons, the

conditions that current can not flow (is Coulomb blocked) are Sn < 0, eV < Sn+1.

In quantum dots, Sn depends linearly on the bias V and gate Vg voltages. Thus, in

the VG−V plane regions with zero current are confined within Coulomb diamonds,

that are identical diamond-shape structures repeating along the VG–axis.

In a suspended carbon nanotube, in addition to the purely Coulomb energy, we

also have the nanomechanical corrections. Generally, these corrections make the

relations between V and VG, which describe the boundaries of Coulomb blockade

regions, non-linear. Consequently, the Coulomb “diamonds” in suspended nan-

otubes are not diamonds any more, but instead have a curvilinear shape (with

the exception of the case CL = CR = 0). Their size is also not the same and

decreases with |VG|. Thus, the mechanical degrees of freedom affect the Coulomb

blockade diamonds. However, since these effects originate from the nanomechani-

cal term which is typically a small correction, its influence on Coulomb diamonds

is small as well. For the E-nanotube, these effects do not exceed several percents

for typical gate voltages.

6.3.2 Two-gate setup and bistability

To demonstrate that the nanomechanical effects can not generally be omitted, we

consider a suspended tube symmetrically placed in between two gates and show

below that bistability in the tube position occurs [26].
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Fig. 1 again presents the schematic setup, but the suspended tube is placed

between two gates, labeled up (U) and down (D). Since up and down capacitances

are connected in parallel, their sum CG = CU + CD matters. Assuming that the

distance of the straight tube to both gates is the same, we write

CU,D =

∫ L

0

dx

2 ln 2(R∓z)
r

, (6.15)

Expanding this for z � R and calculating the electrostatic force, we arrive at an

equation similar to Eq. (6.6), with a constant force K0 that is replaced by γz,

where

γ =
(ne)2(ln 2R/r + 2)

2L2R2 ln 2R/r
.

We now solve this equation in the strong-bending regime. For this purpose [25]

we disregard the term IEz′′′′, and use the boundary conditions z(0) = z(L) = 0.

Multiple solutions emerge; the ones with the lowest energy are

z = ±2L2

π2

√
γ

ES
sin

πx

L
. (6.16)

Thus, the tube in the strong-bending regime can oscillate between the two sym-

metric positions. This creates a basis for observation of quantum effects, as

discussed in Ref. [26]. We emphasize once again, that within this model, the

multi-stability is due to the charging of the tube in combination with the non-

linearity.

6.4 Eigenmodes

The eigenfrequency of a particular eigenmode is an important directly measur-

able [22] property. In future experiments on suspended tubes we expect that the

eigenmodes influence tunneling (”phonon-assisted tunneling”) in a similar way as

observed for a single C60 molecule [10]. Below, we demonstrate that the effect of

the electrostatic interactions on the elastic properties (specifically, eigenfrequen-

cies) is strong and changes the behavior qualitatively.

To find the eigenmodes, we apply a gate voltage with a large dc (single gate)

and a small ac component. The displacement z(x, t) is time-dependent, which

provides an external force −ρSz̈ to Eq. (6.6), where ρ equals 1.35 g/cm3. Eq.

(6.6) must be solved first with a constant stress, and then the stress is found

self-consistently. The tube displacement has a small ac component δz on top of a
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large static one. The self-consistency procedure is essentially the same and again

leads to Eq. (6.8). Thus, the dc component of the gate voltage determines the

stress T and it therefore controls the eigenmodes.

The frequencies of the (transverse) eigenmodes are found from the requirement

that the equation

IEδz′′′′ − Tδz′′ − ρSω2δz = 0 (6.17)

with the boundary condition δz(0) = δz(L) = δz′(0) = δz′(L) = 0 has a non-zero

solution. This yields the following equation for the frequency ω,

cosh y1 cos y2 − 1

2

y2
1 − y2

2

y1y2

sinh y1 sin y2 = 1, (6.18)

y1,2 =
L√
2

(√
ξ4 + 4λ2 ± ξ2

)1/2

, λ =

√
ρS

EI
ω.

In the following, we restrict ourselves to the fundamental (lowest frequency) eigen-

mode ω0. In the limiting cases, the solutions of Eq. (6.18) are

ω0 =

√
EI

ρS

{
22.38L−2 + 0.28ξ2, ξL � 1;

πξL−1 + 2πL−2, ξL 
 1.
(6.19)

The second terms on the rhs represent small corrections to the first ones.

The frequency dependence ω0 ∝ L−2 is associated with a loose string, while

ω0 ∝ L−1 means that the string is tied like in a guitar. Our results show that

the behavior of the tube crosses over from “loose” to “tied” as VG increases. For

the fundamental mode, the crossover occurs at ξL ∼ 1, corresponding to the

crossover from weak to strong bending. The middle curve in Fig. 3 shows the

frequency of the fundamental mode as a function of gate voltage (zero residual

stress). The arrow denotes the cross-over from weak to strong bending.

The gate voltage dependence of the frequency is a stepwise function, as shown

in the inset of Fig. 3. Steps occur whenever an additional electron tunnels onto

the tube. For the E-nanotube, their height is ∼5 MHz, which is measurable.

Note, that the present submicron silicon devices are always in the weak-bending

regime so that corrections due to the second term in Eq. (6.19) are too small

to be measured. Furthermore, one should realize that frequency quantization is

only observable if the frequency itself is greater than the inverse tunneling time

for electrons.

We now consider the effect of a residual stress (T0 �= 0). First, we obtain the

stress by solving Eqs. (6.2), (6.6) (in the latter, T is replaced by T + T0). In

particular, for a negative stress T + T0 < 0, T0 ∼ −EI/L2, Eq. (6.2) acquires
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Figure 6.3: Gate voltage dependence of the frequency ω0 of the fundamental mode
for three different values of the residual stress. Numbers are taken for the E-nanotube
(see Fig. 2). The fundamental mode of an unstressed tube is 140 MHz (thin horizontal
line). The inset is an enlargement of the T0 = 0 curve of the main figure showing
step-wise increases of ω0 whenever an additional electron tunnels onto the tube.

several solutions. This signals Euler instability: the tube bends in the absence of

an external force.

If the residual stress is large, T0 
 EI/L2, the tube always acts like a tied

string (upper curve in Fig. 3). The frequency depends weakly on VG for low

voltages, and above T ∼ T0 (denoted with the arrow) grows with an envelope

∝ V
2/3
G . For negative T0 the picture is qualitatively different (lower curve in

Fig. 3). Whereas for large gate voltages the envelope is still proportional to V
2/3
G ,

the frequency dives below the value for an unstressed tube (22.38(EI/ρS)1/2L−2,

represented by the thin solid line in Fig. 3), when the overall stress becomes

negative. It further drops to zero at the Euler instability threshold.

The qualitative difference between the various regimes means that by measur-

ing the gate voltage dependence of ω0 one can determine the sign of T0 and get

a quantitative estimate. On the other side, the gate effect can be used to tune

the eigenfrequencies. We also mention that in the absence of charging effects, the

steps vanish but the overall shape of the curves in Fig. 3 remains the same.
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6.5 Relaxing the approximations

While considering equilibrium displacement and eigenmodes of the nanotube, we

made a number of simplifying approximations. In this Section, we consider two

of them — disregarding the capacitances CL,R and uniform distribution of the

charge — and show that relaxing these approximations affects the above results

quantitatively, but not qualitatively.

In this Section, we consider the case of zero residual stress T0 = 0.

6.5.1 Finite capacitances to the leads

We now relax the limitation CL, CR = 0. For the general case, Eq. (6.6) still

holds, however, the force K0 must be adjusted,

K0 =
1

L2R

C2
0

(C0 + CR + CL)2
[ne + (CL + CR)VG − CLV ]2 , (6.20)

where C0 = L/(2 ln 2R/r) is the capacitance of the straight nanotube to the gate.

The results of the numerical solutions for the displacement and the frequency of

the fundamental mode are plotted in Fig. 6.4. For simplicity we have taken

CL = CR = φCG; the four curves correspond to different values of the parameter

φ. The curves with φ = 0 are the same as the ones in Figs. 6.2, ??.

The plots demonstrate that the qualitative picture remains the same if we

include finite capacitances to the leads. The steps observed for φ = 0 become

skewed with the increase of CL and CR (see inset of Fig. 4). At a certain φ they

disappear. For φ > 10 the plots are, on the scale presented, the same.

6.5.2 Non-uniform charge distribution

Above, we have assumed a uniform charge distribution along the nanotube.

Rather than trying to analyze the effect in general, we consider the opposite

situation when the excess charge is concentrated at one point (to be more pre-

cise, in a concise region of the tube radius r), which may represent, for instance,

a pinning center. This center is placed in the middle of the nanotube. Though we

believe that the charge distribution in suspended nanotubes is closer to uniform,

this situation applies to a suspended quantum dot as realized recently [27].

The gate-charge capacitance CG in this geometry is

C =
1

1
r
− 1

2R

, (6.21)
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Figure 6.4: Above: Displacement as a function of gate voltage for the E-nanotube
with finite capacitances to the leads. The four curves correspond to different values of
the parameter φ, defined as CL = CR = φCG. The inset is an enlargement of the main
figure. Below: The frequency of the fundamental mode normalized to the fundamental
frequency of an unstressed tube Ω = (22.38L−2(EI/ρS)1/2 = 141 MHz for the same
parameters as above.
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Figure 6.5: Displacement of the center of the E-nanotube (above) and the frequency
of the fundamental eigenmode (below) for uniform charge distribution and for the case
that the charge is concentrated at one point. Ω is the fundamental frequency of an
unstressed tube.

and we proceed to obtain the equations of motion,

IEz′′′′ − Tz′′ = Fδ

(
x − L

2

)
, F ≡ (ne)2

4R2
, (6.22)
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where we again set CL = CR = 0.

The solution with the same boundary conditions as previously, z(0) = z(L) =

z′(0) = z′(L) = 0, and with z, z′, and z′′ all continuous at x = L/2, is

z(x) =
F

2EIξ3

{
tanh

ξL

2
[cosh ξx − 1] − sinh ξx + ξx

}
(6.23)

for 0 < x < L/2. For L/2 < x < L the coordinate x should be replaced by

(L−x) because z(x) = z(L−x). As before, ξ = (T/EI)1/2 and Eq. (6.2) is used

to obtain the stress self-consistently,

T =

{
F 2L4S/(30720EI2), T � EI/L2,

(1/2)(ESF 2)1/3, T 
 EI/L2.
(6.24)

Consider now the strong-bending regime and compare the results for the stress

Tu for the uniform (lower line of Eq. (6.8) and Tn for the concentrated (lower

line of Eq. (6.24) charge distributions,

Tn = Tu

(√
3L

4R

)2/3

. (6.25)

For L 
 R we formally have Tn 
 Tu. This means that for the same gate voltage

more stress is induced at the nanotube if the charge is concentrated at one point.

Also, the displacement of the tube is greater in the concentrated case,

zn
max = 0.87

(
L

R

)1/3

zu
max.

Thus, if the charge distribution is concentrated, NEMS are “more effective” than

for the uniform charge. For the E-nanotube the ratio between non-uniform and

uniform maximal displacement is 1.49. The difference between uniform and non-

uniform charge distributions is illustrated in Fig. 6.5.

6.6 Discussion

The presented model is simplified in many respects. Mechanical degrees of free-

dom are introduced via classical theory of elasticity: The nanotube (modeled by

a rod) is considered as incompressible and without internal structure. This is jus-

tified, since so far the theory of elasticity has described all existing experiments

on carbon nanotubes well. For SWNTs it has been also supported by simulations

(Ref. [15]). Creation of defects in SWNT starts at deformations of order of ten

percents. For larger deformations (see e.g. Ref. [28]) we expect strong deviations
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from the behavior we describe, but this typically lies outside our applicability

range z � R. We have neglected damping, which is also expected to originate

from the creation of the defects and to be irrelevant in this range. We also dis-

regarded quantum effects (cotunneling and finite spacing of quantum levels of

electrons in the tube). These issues need to be clarified for a detailed comparison

with the experimental data, and will be a subject for future research.

Our main result is that the nanotube can be manipulated by the gate volt-

age, which determines its deformation and stress, and modifies the eigenmodes.

Though the eigenmodes of nanotube ropes have been measured in Ref. [22] three

years ago, the strain dependence of the eigenmodes was only recently reported in

Ref. [29] which was published after this manuscript had been submitted for pub-

lication. Ref. [29] demonstrates this effect for singly-clamped multi-wall carbon

nanotubes. We expect that our predictions will soon be tested in experiments on

doubly-clamped SWNTs.
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Chapter 7

Tunneling in suspended carbon

nanotubes assisted by longitudinal

phonons

S. Sapmaz, P. Jarillo-Herrero,
Ya. M. Blanter, C. Dekker, and H.S.J. van der Zant

Current-voltage characteristics of suspended single-wall carbon nanotube quan-

tum dots show a series of steps equally spaced in voltage. The energy scale of

this harmonic, low-energy excitation spectrum is consistent with that of the lon-

gitudinal low-k phonon mode (stretching mode) in the nanotube. Agreement is

found with a Franck-Condon-based model in which the phonon-assisted tunnel-

ing process is modeled as a coupling of electronic levels to underdamped quan-

tum harmonic oscillators. Comparison with this model indicates a rather strong

electron-phonon coupling factor of order unity.

Parts of this chapter have been published in New Journal of Physics 7 243 (2005) and
Physical Review Letters 96, 26801 (2006).
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7.1 Introduction

In nano-electromechanical systems (NEMS), mechanical motion affects electrical

current and vice versa [1, 2, 3, 4]. Of special interest is the study of electron-

phonon coupling in these devices since tunneling of a single electron may induce a

displacement of the movable structure [5, 6, 7, 8, 9, 10]. The interaction strength

is characterized by the dimensionless electron-phonon (e-ph) coupling constant g,

which is proportional to the ratio of the classical and the quantum displacement.

In bulk systems the e-ph coupling is generally weak and the coupling constant is

orders of magnitude smaller than one. However, since the coupling dramatically

increases with decreasing device mass, NEM-devices may exhibit an intermediate

to strong e-ph coupling [11, 12, 13]. In this regime, current-voltage characteristics

are expected to exhibit additional steps whose height can be used as an estimate

of g. For example, g is around one in the C60 molecular devices of Ref. [11], while

measurements on different C140 samples [12] indicate a value of g between 0.2

and 8.

Carbon nanotubes (NTs) are ideal systems for exploring electro-mechanical

effects since they have a small diameter, a low mass, and can be defect free on

a molecular level. In experiments on suspended nanotubes, different methods

have already been used to probe the bending [14, 15] and radial breathing mode

(RBM) [16]. The measurements show that the free-hanging tubes operate in the

underdamped regime of low dissipation. For the fundamental bending mode the

reported quality factor is about 100; for the RBM it is estimated as high as 10000.

Here we present electronic transport spectroscopy measurements on suspended

carbon nanotubes, which show signatures of phonon-assisted tunneling, evidenced

by the presence of a series of steps in the I − V characteristics. Such steps form

a harmonic low-energy spectrum, whose energy scale and length dependence are

consistent with that of the longitudinal stretching mode. Comparison with the

Franck-Condon theory shows that the e-ph coupling constant is of order one.

Devices are fabricated by locating individual nanotubes (laser ablation and

CVD) on a Si/SiO2 substrate using an atomic force microscope (AFM) with

respect to predefined markers. Subsequently, the electrodes are made using con-

ventional e-beam lithography techniques and thermal evaporation of Cr (5 nm)

and Au (50 nm). The nanotubes are suspended by removing the underlying SiO2

in a wet etch step using buffered HF [17]. A schematic sample geometry and

SEM micrograph are shown in Fig. 7.1. In the experiment the source and gate

voltage are defined with respect to the drain, which is connected to ground.
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b)a)

Gate

SiO2

Source
Drain

NT

L

Figure 7.1: (a) Schematic drawing of a suspended nanotube clamped between two
Cr/Au electrodes on top of silicon oxide. The underlying oxide is partially removed
by a wet etch step leaving the nanotube suspended. The highly doped silicon plane is
used as a global gate to tune the electrostatic potential of the nanotube. (b) Scanning-
electron microscope micrograph of a suspended nanotube. The scale-bar represents
200 nm.

7.2 Stability diagrams and low-energy spectra

In Fig. 7.2 we show stability diagrams for three nanotubes measured at 10 mK

(a) and 300 mK (b,c) where the differential conductance, dI/dV , is plotted versus

bias and gate voltage. The three metallic nanotubes have a length between source

and drain contacts, L, ranging from 0.14 to 1.2 µm. Their diameter d is between

1 and 1.4 nm as determined from AFM imaging. In the diamond shaped regions

(Coulomb diamonds) the current is zero due to Coulomb blockade, and the charge

number in the dot is fixed. Regular and closing Coulomb diamonds indicate single

dot behavior [18, 19] in all three samples for the gate range shown. Notice that

the diamonds in Fig. 7.2a do close, as shown in the inset, which was taken at

a higher temperature (300 mK) in a different cooldown. The low-bias current,

however, is suppressed which could be a signature of strong electron-phonon

coupling [5, 9, 10].

Excitations of a quantum dot appear as lines running parallel to the Coulomb

diamond edges in the stability diagrams [18]. At such a line, a new electronic level

becomes resonant with the leads and an additional transport channel opens up.

The energy of an excitation can be determined by reading off the intersection

point between the excitation line and the Coulomb diamond edge on the bias

axis [19]. Furthermore, the excitations correspond to the charge state of the

Coulomb diamond they end up in. Electronic excitations in nanotubes typically

differ between adjacent charge states [20]. In Fig. 7.2a, a dense set of equally

spaced excitation lines (starting from the first electronic excitation) is clearly

visible near VG = 210 mV and 230 mV, i.e., adjacent charge states exhibit a

similar set of excitations with approximately the same energy spacing. The fact
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Figure 7.2: Stability diagrams for three different suspended nanotubes with a length
in between contacts of 1.2 µm, 420 nm, and 140 nm for (a),(b) and (c) respectively.
The conductance (dI/dV ) is plotted as a function of source-drain voltage, V , and gate
voltage, VG. White corresponds to low and Dark to high conductance. Measurements
have been performed at T=300 mK except in (a), where the base temperature was
10 mK. (a) Small region of a stability diagram showing closely spaced sets of lines run-
ning parallel to the Coulomb diamond edges for two charge states. At low bias, a strong
suppression of the conductance is present. Consecutive dark and white lines indicate
positive differential conductance. Inset: regular diamonds that close are observed in
a different cool down at T= 300 mK. (b) and (c) Diamond crossings for two other
samples, again showing lines parallel to the diamond edges with energy separations
smaller than expected for electronic excitations.

that excitations occur primarily in one direction is due to asymmetric tunnel

barriers [19].

The energy differences between the excitation lines of Fig. 7.2 are shown in the

insets of Fig. 7.3. In all three cases, the excitation energy is an integer multiple



7.3 Vibrational states and Franck-Condon model 83

of the first (fundamental) excitation. Thus, they form a harmonic spectrum

with up to 5 levels. A linear fit yields an excitation energy of 140, 690, and

530 µeV for the tubes with length 1.2 µm (a), 420 nm (b), and 140 nm (c),

respectively. These values are an order of magnitude smaller than the expected

mean electronic level spacing given by ∆ = hvF /2L with h the Planck constant

and vF = 8.1 · 105 m/s [21] the Fermi velocity.
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Figure 7.3: Current as a function of source-drain voltage at a gate voltage indicated by
the black lines in Fig. 7.2. The lines represent the step heights calculated in the Franck-
Condon model (see text) for an electron-phonon coupling parameter of 0.95, 1.1, and
0.5 for (a), (b), and (c) respectively. In the insets, the energy separation between the
peaks or steps (lines in Fig. 2) is plotted, showing equally spaced, harmonic spectrum.
The slope of the drawn line is 140, 690, and 530 µeV for the insets of (a), (b), and
(c) respectively.

7.3 Vibrational states and Franck-Condon model

A more natural explanation for the observed harmonic spectra is a vibrational

mode coupled to an electron tunneling [11]. Multiple steps with identical spacing

would then arise from the excitation of an integer number of vibrational quanta.

Indeed, the observed equidistant energy separation is consistent with that ex-

pected from the longitudinal stretching mode in the nanotubes. In Fig. 7.4,

we plot the energy of important low-energy vibrational modes of single-wall

nanotubes [22, 23]. For comparison, we plot the mean electronic energy level

separation, ∆, in black. Squares correspond to the fundamental excitation en-

ergy extracted from the linear fits in the insets of Fig. 7.3. The energy of

the radial breathing mode does not depend on the nanotube length and equals

28 meV/d(nm). The bending mode has a L−2 dependence [25], and an energy

much smaller than the measured excitation energy. The stretching mode vibra-
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tion energy is inversely proportional to the length [24], E = (nh/L)
√

Y/ρm,

where Y is Young’s modulus, ρm is the density and n is the vibrational quantum

number. For nanotubes with ρm = 1.3 g/cm3, Y = 1 TPa the vibrational energy

corresponding to the fundamental mode is ∼ 110 µeV/L(µm) [23]. As Fig. 7.4

shows, the data are in good agreement with these predicted values.
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Figure 7.4: Energy scales of different vibrations and electronic excitations plotted on
a log scale for a nanotube with a 1.4 nm diameter. The radial breathing mode does
not depend on the length L. The bending mode vibrations have a L−2 dependence.
The mean electronic level spacing and the stretching mode (blue) vibrations depend
inversely on the length.

The coupling of electronic levels with vibrational modes (quantum harmonic

oscillators) can be described in terms of the Franck-Condon model [26]. According

to the Franck-Condon principle, an electron in an electronic transition moves so

fast that the nuclear positions are virtually the same immediately before and

after the transition. As a consequence, the transition rate is proportional to the

Franck-Condon factors defined as the square of the overlap integral between the

vibrational wavefunctions of the two states involved. An important parameter

is the electron-phonon coupling factor, g = 1
2
( x

x0
)2. This is the ratio of the

classical displacement length, x, to the quantum mechanical oscillator length,

x0 =
√

�/mω. Alternatively, g = F 2

2�mω3 , where F is the force on, m the mass of,

and ω the frequency of the oscillator.

For low damping, the vibrational levels remain sharp and the Franck-Condon
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model predicts steps in the current-voltage characteristics, that are equally spaced

in energy (bias voltage). In the presence of strong relaxation, the normalized step

heights are given by [5]: Pn = e−ggn/n!. In the strong coupling (g 
 1) limit, the

height of the first steps is exponentially suppressed (phonon blockade) [5, 9, 10].

Multiple steps only arise if g is of the order of one or larger and the observation

of a spectrum of equally spaced excitation lines therefore indicates that the e-ph

coupling in our suspended nanotubes must be rather strong.

In Fig. 7.3, the red curves represent the step heights (Pn) given by the Franck-

Condon model with strong relaxation discussed above. The symbols are the

experimental curves taken at the green lines in Fig. 7.2. Considering the simplicity

of the model, reasonable agreement is obtained in all three cases. The comparison

yields an estimate of g of 0.95, 1.1, and 0.5 in Fig. 7.3a, b, and c respectively,

indicating that it is approximately length independent. We have also performed

a similar analysis at other gate voltages yielding the same g-values.

The theoretical curves in Fig. 7.3 do not exactly follow the measured ones.

Better fits may be obtained if the influence of a gate voltage and asymmetric cou-

pling is considered [5], or if coupling to excited electronic states [27] is considered,

or if the influence of damping or non-equilibrium phonons (weak relaxation) is

taken into account. In the latter case the peak heights are expected to display

a non-systematic dependence on g and peak number [9]. Consideration of these

effects is, however, beyond the scope of this chapter.

7.4 Electron-phonon coupling

Let us now make some estimates for the electron-phonon coupling parameter

g. First, we note that the coupling between electrons and longitudinal phonons

is expected to be weak. Indeed, in the leading approximation the nanotube is

parallel to the plane of the gate, and thus the force from the gate is perpendicular

to the displacement produced by the longitudinal phonons — there is no coupling

associated with the gate. The electron-phonon interactions come in this case from

the same mechanism as in the bulk graphite — coupling to the polarization charge

— and the corresponding coupling constant is small.

This is not entirely correct, since the gate bends the nanotube, and the dis-

placement along the tube is actually skewed with respect to the gate plane. The

coupling corresponding to this mechanism can be estimated as follows: Let the

tube of length L be deformed in such a way that the displacement of its cen-

ter is ∆z � L. Then the elongation of the tube, which plays the role of the
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displacement ∆x produced by the longitudinal phonons, is

∆x =
√

L2 + (∆z)2 − L ≈ (∆z)2/2L .

For a 500 nm long nanotube at a distance of 100 nm from the gate, the shift

of the center ∆z is about 0.1 nm [25]. Calculating the coupling constant for

ω0 ∼ 1012 Hz and M ∼ 10−22 kg, one obtains g ∼ 10−2, in contrast with the

experimental observations.

A larger e-ph coupling is obtained if the electron density is inhomogeneous.

The interaction energy of electrons with the polarization charge is characterized

by the energy [28]

W = −
∫

dxdx′ρ(x)K(x − x′)
∂P

∂x′ . (7.1)

Here, ρ(x) is the density of excess charge produced by one electron, K(x−x′) is an

interaction kernel, which we approximate by δ(x− x′) for the case when interac-

tions are effectively screened by the gate, and P (x) ≈ eρ0z(x) is the polarization

vector. The quantity ρ0 ∼ kF is the total electron density and z(x) is the displace-

ment, which in the single-mode approximation becomes z(x) = An sin(πnx/L).

Calculating the force F = −∂W/∂An, we obtain

F =
eρ0πn

L

∫ L

0

dx ρ(x) cos
πnx

L
. (7.2)

If the excess charge density is uniform, ρ(x) = e/L, F = 0 for all modes. Incor-

poration of interactions that are screened at distances longer than the distance to

the gate, yields a force that scales as L−2. In this case, the coupling parameter g

also scales as L−2 and typical values are in the order of 10−2, as we have already

discussed.

Assuming that the charge is localized in the center of the tube, ρ(x) =

eδ(x−L/2), the force is zero for odd harmonics, but for even harmonics, n = 2l,

it reads Fl = (−1)le2ρ02πl/L and g = 4π2e4ρ2
0l

2/2L2
�mω3

0. Since m scales with

L and ω0 inversely with L, g is length independent as observed in the experiment.

Also, g scales as l−1 because ω0 scales with l indicating that higher modes are

coupled weaker to electrons. Numerical estimates show that g ∼ 1. Localization

of an electron in a point away from the middle produces coupling to both odd

and even modes. Note that the electron does not have to be strongly localized:

For any non-uniform density this mechanism will produce g ∼ 1. A non-uniform

density can be created by impurities located in the substrate, or induced by a

redistribution of electrons in a suspended tube bent by a underlying gate elec-

trode [29]. Note, that recent theoretical work has also considered e-ph coupling
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in suspended nanotubes [30, 31]. They find g-values that are smaller than the

experimental ones.

An interesting feature of the data is the appearance of negative differential

conductance (NDC) in the current-voltage characteristics. NDC is very pro-

nounced in Fig. 7.3a, but also present in Fig. 7.3b,c. Although several expla-

nations for NDC have been put forward, its origin remains unclear. Koch and

von Oppen [10] showed that for low relaxation and strong e-ph coupling, NDC

features appear, although they do not follow regions with strong positive dif-

ferential conductance (PDC) as in our data. McCarthy et al. [6] have shown

that NDC features can be due to an e-ph coupling that is voltage dependent.

Their calculations also reproduce the catastrophic current decrease of Fig. 7.3a

for bias voltages higher than 3 mV. However, at the moment we do not know

how such a voltage dependence would arise in suspended tubes. Finally, Nowack

and Wegewijs [27] have considered a Franck-Condon model with a coupling to

an electronic and its excited state. They show that the competition between

the two states generates strong NDC effects. NDC and PDC lines may have the

same gate voltage dependence preceded by a region of suppressed current. This

scenario may especially be relevant for the data in Fig. 7.3a.

In summary, transport measurements on suspended SWNTs show signatures

of phonon-assisted tunneling, mediated by longitudinal vibrational (stretching)

modes. The current-voltage characteristics show multiple steps whose heights are

in reasonable agreement with the Franck-Condon predictions if the e-ph coupling

constant is of order unity. Suspended nanotube quantum dots form an interesting

model system for future studies on the interaction between single electrons and

quantized phonons in the intermediate to strong electron-phonon coupling limit.

We thank Karsten Flensberg, Wataru Izumida, Leo Kouwenhoven, Leonid

Gurevich and Maarten Wegewijs for discussions. Financial support is obtained

from the Dutch organization for Fundamental Research on Matter (FOM), which

is financially supported by the ’Nederlandse Organisatie voor Wetenschappelijk

Onderzoek’ (NWO) and this research was supported by EC FP6 funding (contract

no. FP6-2004-IST-003673). This publication reflects the views of the authors and

not necessarily those of the EC. The Community is not liable for any use that

may be made of the information contained herein.

References

[1] M. L. Roukes, Nanoelectromechanical systems face the future. Phys. World

14, 25 (2001).



88

Chapter 7. Tunneling in suspended carbon nanotubes assisted by longitudinal

phonons

[2] A.N. Cleland, Foundations of Nanomechanics (Springer, Berlin, 2002).

[3] L. Y. Gorelik et al., Shuttle mechanism for charge transfer in Coulomb block-

ade nanostructures. Phys. Rev. Lett. 80, 4526 (1998).

[4] A. Erbe, C. Weiss, W. Zwerger, and R. H. Blick, Nanomechanical resonator

shuttling single electrons at radio frequencies. Phys. Rev. Lett. 87, 096106

(2001).

[5] S. Braig and K. Flensberg, Vibrational sidebands and dissipative tunneling

in molecular transistors. Phys. Rev. B 68, 205324 (2003).

[6] K. D. McCarthy, N. Prokof’ev, and M. T. Tuominen, Incoherent dynamics

of vibrating single-molecule transistors. Phys. Rev. B 67, 245415 (2003).

[7] Y. M. Blanter, O. Usmani, and Y. V. Nazarov, Single-electron tunneling

with strong mechanical feedback. Phys. Rev. Lett. 93, 136802 (2004).; 94,

049904(E) (2005).

[8] N. M. Chtchelkatchev, W. Belzig, and C. Bruder, Charge transport through

a single-electron transistor with a mechanically oscillating island. Phys. Rev.

B 70, 193305 (2004).

[9] A. Mitra, I. Aleiner, and A. J. Millis, Phonon effects in molecular transistors:

Quantal and classical treatment. Phys. Rev. B 69, 245302 (2004).

[10] J. Koch and F. von Oppen, Franck-Condon blockade and giant Fano factors

in transport through single molecules. Phys. Rev. Lett. 94, 206804 (2005).

[11] H. Park et al., Nanomechanical oscillations in a single-C-60 transistor. Na-

ture (London) 407, 57 (2000).

[12] A. N. Pasupathy et al., Vibration-assisted electron tunneling in C140 tran-

sistors. Nano Lett. 5, 203 (2005).

[13] E. M. Weig et al., Single-electron-phonon interaction in a suspended quantum

dot phonon cavity. Phys. Rev. Lett. 92, 046804 (2004).

[14] B. Reulet et al., Acoustoelectric effects in carbon nanotubes. Phys. Rev. Lett.

85, 2829 (2000).

[15] V. Sazonova et al., A tunable carbon nanotube electromechanical oscillator.

Nature (London) 431, 284 (2004).

[16] B. J. LeRoy, S. G. Lemay, J. Kong, and C. Dekker, Electrical generation

and absorption of phonons in carbon nanotubes. Nature (London) 432, 371

(2004).

[17] J. Nyg̊ard and D. H. Cobden, Quantum dots in suspended single-wall carbon

nanotubes. Appl. Phys. Lett. 79, 4216 (2001).



References 89

[18] H. Grabert and M.H. Devoret, Eds. Single Charge Tunneling (Plenum, New

York, 1992).

[19] L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Few-electron quantum

dots. Rep. Prog. Phys. 64, 701 (2001).

[20] D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, and R. E. Smalley,

Spin splitting and even-odd effects in carbon nanotubes. Phys. Rev. Lett. 81,

681 (1998).

[21] S. G. Lemay et al., Two-dimensional imaging of electronic wavefunctions in

carbon nanotubes. Nature (London) 412, 617 (2001).

[22] M. S. Dresselhaus and P. C. Eklund, Phonons in carbon nanotubes. Adv.

Phys. 49, 705 (2000). H. Suzuura and T. Ando, Phonons and electron-phonon

scattering in carbon nanotubes. Phys. Rev. B 65, 235412 (2002). A. De Mar-

tino and R. Egger, Acoustic phonon exchange, attractive interactions, and

the Wentzel-Bardeen singularity in single-wall nanotubes. Phys. Rev. B 67,

235418 (2003).

[23] The twisting mode vibration of the nanotube has a comparable energy with

the stretching mode. However, the twisting mode does not couple [22].

[24] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, Oxford,

1986).

[25] S. Sapmaz, Y. M. Blanter, L. Gurevich, and H. S. J. van der Zant, Car-

bon nanotubes as nanoelectromechanical systems. Phys. Rev. B 67, 235414

(2003).

[26] G.C. Schatz, and M.A. Ratner, Quantum Mechanics in Chemistry (Prentice-

Hall, Englewood Cliffs, 1993).

[27] K.C. Nowack and M. Wegewijs, Vibration-assisted tunneling through com-

peting molecular states. Cond-mat/0506552 (2005).

[28] A. A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland,

New York, 1988).

[29] D. Fedorets (unpublished).

[30] K. Flensberg, Electron-vibron coupling in suspended nanotubes. New J. Phys.

8, 5 (2006).

[31] W. Izumida and M. Grifoni, Phonon-assisted tunnelling in interacting sus-

pended single-wall carbon nanotubes. New J. Phys. 7, 244 (2005).



90

Chapter 7. Tunneling in suspended carbon nanotubes assisted by longitudinal

phonons



Chapter 8

Excited state spectroscopy in carbon

nanotube double quantum dots

S. Sapmaz, C. Meyer
P. Beliczynski, P. Jarillo-Herrero, and L. P. Kouwenhoven

We report on low temperature measurements in a fully tunable carbon nanotube

double quantum dot. A new fabrication technique has been used for the top-gates

in order to avoid covering the whole nanotube with an oxide layer as in previous

experiments. The top-gates allow us to form single dots, control the coupling be-

tween them and we observe four-fold shell filling. We perform inelastic transport

spectroscopy via the excited states in the double quantum dot, a necessary step

towards the implementation of new microwave-based experiments.

This chapter has been published in Nano Letters. Web Release Date: 28-Mar-2006; (Letter)
DOI: 10.1021/nl052498e.
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8.1 Introduction

Electron spins in double quantum dots (DQDs) are one of the leading systems

for fundamental studies of elementary solid-state qubits [1]. Recent progress

has been based on DQDs in 2-dimensional electron gases in GaAs semiconductor

heterostructures [2, 3]. However, the presence of non-zero nuclear spins limits the

decoherence time in such structures [3, 4]. This drawback has stimulated the quest

for novel materials that allow to fabricate DQDs with longer spin decoherence

times. Among these, carbon nanotubes (CNTs) have properties that seem to

make them an ideal material. Most of the natural carbon (98.93%) is 12C without

nuclear spin. Thus, the nuclear field that leads to spin relaxation [5, 6] will be

small compared to III/V semiconductors or even zero, if pure 12C is used in the

growth of the carbon nanotubes. Also the spin-orbit interaction, which limits the

spin relaxation time in semiconductor heterostructures [6, 7, 8], is expected to be

very small in CNTs because of the low atomic number of carbon.

In order to realize CNT-DQDs (Figure 1), it is highly desirable to be able

to create tunable tunnel barriers at arbitrary locations in a CNT, and some

elementary devices have already been demonstrated [9, 10]. In order to make

use of a CNT-DQD in quantum information processing, e.g. by determining

spin and orbital relaxation times and by performing quantum operations, access

to (spin) excited states is crucial. These excited states have not been observed

previously in CNT-DQDs. Here we demonstrate an improved fabrication scheme

compared to earlier approaches. Thin top-gates are evaporated such that only a

small portion of the CNT is covered with oxide. We show electronic transport

through the ground and excited energy states of CNT-DQDs.

The single walled carbon nanotubes (SWCNTs) are grown using chemical

vapor deposition [11] (CVD) at lithographically predefined positions on a degen-

erately p-doped Si substrate with a 250 nm thick thermal oxide using a Fe/Mo

based catalyst. The nanotubes are located by atomic force microscopy with re-

spect to predefined markers, such that contacts and gates can be designed for

each tube individually. First, we fabricate the contacts by means of electron

beam lithography on a double layer PMMA-based resist, followed by metal (Pd)

evaporation and lift-off in acetone. We use Pd as contact material because it

introduces little or no barrier at the nanotube-metal contact [12, 13]. In a sub-

sequent electron beam lithography step we ’write’ the gate structures. For the

top-gates we evaporate a 2 nm thin layer of Al and use the natural formation

of thin insulating native oxide in an oxygen environment. We oxidized for ten

minutes at 1 bar pure oxygen pressure to ensure a 2 nm thick oxide. These steps

are then repeated once more, so that we end up with an oxide thickness of 4 nm.
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Figure 8.1: AFM picture of a CNT-DQD device similar to the one used for the actual
measurements. The actual device (not shown here) has a tube diameter of about 3 nm
and a total length of 1.9 µm between the Pd contacts, the left and right dots are both
550 nm, source-TGR segment is 560 nm long and the remaining TGL-drain distance is
220 nm. Room-temperature measurements show a source-drain resistance of 30 kΩ and
a small variation of the resistance with changing back-gate voltage. For the three top-
and the two side-gates, a layer structure of Al2O3/Al (4 nm/35 nm) has been used. All
structures in the image appear wider due to AFM tip convolution.

The evaporation is continued with a 35 nm thick Al layer and finalized by 15 nm

of AuPd on top. The top-gates are about 30 nm wide, which is the lower limit for

our fabrication process. The advantage of a narrow top-gate is that it controls the

tunneling barrier on a local scale and only a small portion of the tube is covered

with oxide. We think that this is an advantage for future devices, since an oxide

always has charge traps and therefore provides a source of charge fluctuations

that interfere with transport measurements.

Figure 1 shows an AFM image of a representative sample. The nanotube

is divided into four segments by the three top-gates (TGL, TGM and TGR).

The SWCNT segments between source-TGR and TGL-drain are not forming a

quantum dot due to the low source and drain contact resistances [12, 13]. By

applying voltages to the top-gates we can tune the barriers and create quantum

dots. Each quantum dot is addressed individually by the side-gates SGL and SGR.

Room-temperature measurements show a source-drain resistance of 30 kΩ and

a small variation of the resistance with changing back-gate voltage indicating

a small band gap tube. The conductance versus the left side-gate voltage for

different values of the central top-gate is shown in the appendix.
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8.2 Carbon nanotube quantum dots with tun-

able barriers

We can operate the sample in both the p-doped and n-doped regions. At low

temperatures (300 mK) we observe the highest conductance when applying nega-

tive voltages to the top-gates and operate the device in the hole-transport regime.

Figure 2 shows a differential conductance plot as a function of source-drain and

back-gate voltage. The highly-doped silicon substrate is used as the back-gate

with the intention to change the electrochemical potential of the nanotube uni-

formly. Note that the average conductance is between 2 and 3 times e2/h (the

measured maximum is 3.14 e2/h). The pattern in Figure 2 is due to quantum

interference in the nanotube which acts as an electron waveguide in analogy with

the optical Fabry-Perot cavity, as previously studied in nanotubes [13, 14]. The

bias voltage at the crossing point VC between adjacent left- and right-sloped dark

lines (see white arrows) is found to depend on the length of the waveguide L, as

VC = hvF /2eL (Fermi velocity vF = 8.1 · 105 m/s [15]). The pattern in figure 2

is less regular than reported in previous studies [14]. A possible reason for this is

the presence of narrow top-gates on the tube which can act as weak scatterers.

We mainly find a value of VC = VSD ∼ 0.5 − 0.6 meV, corresponding to a length

of about 3 µm. This suggests that the electron scattering occurs primarily at

the nanotube-Pd interfaces since the extracted length is much larger than the

top-gate spacing. The overestimation of the length could be due to band bend-

ing. Close to the band gap, the dispersion dE/dk is smaller than in the linear

dispersion relation of a metal tube and therefore the velocity decreases as well,

and thus results in a smaller value for the crossing point VC .

By applying positive voltages to the top-gates we form barriers in this p-type

region. Figure 3a shows the typical characteristics of a clean nanotube single

quantum dot. We form the dot by setting the voltages on TGL, TGM to 4 V,

and TGR to -4 V to keep this part open. The four-fold shell filling pattern in

the Coulomb blockade diamonds expected for carbon nanotubes [16, 17, 18, 19]

is clearly visible (see inset for addition energies) together with the excitation

lines (lines parallel to the diamond slope). Only 5 parameters are needed to

characterize the nanotube low-energy electronic shell structure [20]. These are

the charging energy EC , the orbital level spacing ∆, the sub-band mismatch δ,

the exchange energy J , and the excess Coulomb energy dU . The fact that the

three smaller diamonds in Figure 3a are about the same size (see also inset) and

quite smaller than the large diamond suggests that the values for δ, J , and dU

are small compared to ∆. We extract for EC ∼ 4 meV, and for ∆ ∼ 2 meV. This
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is also consistent with the observed excitation lines. A clear excitation line is

present at around 2 meV and additionally we see inelastic co-tunneling lines [21]

at energies less than 200 µeV, which are most likely due to the small values of

the parameters δ, J , dU . We obtain the length of the nanotube quantum dot

L = hvF /2 = 740 nm from the value of the level spacing (∼ 2 meV). This is in

reasonable agreement with the fabricated nanotube quantum dot size of 550 nm.

The overestimation of its length may again be due to the smaller velocity close

to the gap (see discussion above).

The characterization of the right dot is shown in Figure 3b. No clear shell-

filling pattern is observed in this case. But closed diamonds and constant slopes

of the diamond edges indicate that we measure a single dot. Excited states are

also clearly visible. Assuming that δ, J , and dU are as small as in the left dot,

we obtain a larger charging energy in the order of EC ∼ 10 meV [22]. From

the excited states, we find for the level spacing ∼ 3 meV. This corresponds to a

quantum dot length of 570 nm, again in good agreement with the designed size.

We also observe negative differential conductance (NDC) which is seen as black

lines parallel to the diamond slope. NDC has been observed in many types of

quantum dots and can have different origins [23, 24, 25]. A possible explanation

in our structure could be that a poorly coupled excited state becomes occupied,

which then blocks the current through the ground state. This leads to a smaller

current at larger bias and therefore to NDC.

Figure 8.2: Differential conductance measured with a lock-in amplifier. All top-gates
are set to -4 V. This opens the barriers completely, because the measurement is done
in the p-type region of the small bandgap SWNT. Fabry-Perot interference is observed
over a wide gate range. The inset shows a zoom-in of the region in the white rectangle.
One can clearly identify destructive interference at ∼0.6 meV (see arrows). The high
conductance (up to G = 3.1e2/h) shows that the Pd contacts have a transmission close
to T = 1.
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8.3 Carbon nanotube double quantum dot

Figure 4 shows the characteristic “honeycomb” structure of the current through

a double quantum dot [26] in the strongly coupled regime. Here, the two dots

are not completely separated but interact via tunnel coupling, thus forming the

analogue of a molecule with covalent bonding. The co-tunneling lines of the

hexagonal pattern are visible and exhibit the four-fold shell filling for the left

dot, just as the diamonds did in the previous single dot measurement: a large

hexagon is followed by three small ones in the vertical direction of the left side-

gate. This pattern repeats for every electron number in the right dot with the

same top-gate settings.

In Figure 5 we show the double dot in the weakly coupled regime, i.e. the

inter-dot tunnel resistance is high and the capacitive coupling between the dots

dominates the transport behavior. The measurements are done in a different

gate-region than the previous measurements. A small voltage is applied at the

center top-gate (200 mV) and the left and right top-gates are set to zero Volts

in order to reach the weakly coupled regime. The values for the side-gates are

adjusted because the top-gates do not only change the tunnel barriers but shift

the chemical potential of the dot as well. The triple points of the expected

hexagonal pattern are very well visible and, due to the large bias, develop into

a) b)

1 2 3 4

Figure 8.3: Stability diagrams of the left and right quantum dot: (a) The left dot is
formed with top-gate values TGL = TGM = 4 V, TGR = -4 V. Four fold shell filling
and excited states are clearly visible in the numeric dI/dV . In the inset, the addition
energy of the N -th electron is plotted for three shells. The yellow dotted lines are
a guide to the eye indicating the shape of one small and one large diamond and the
electron number in a particular shell is indicated. (b) The right dot is formed with
top-gate values TGL = -4 V, TGM = 2 V, and TGR = 4 V. No obvious shell-filling is
observed in this case. However, excited states are clearly visible. Those that belong to
the level splitting are indicated by arrows. Regions of negative differential conductance
are also observed (black lines).
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(N,M+1)(N,M)

(N+4,M+1)

a) b)

Figure 8.4: (a) A double dot in the strongly coupled regime is formed with TGL =
TGM = 4 V, and TGR = 1.5 V (VSD = 1 mV). The absolute values for (N, M) of the
(left, right) quantum dot are unknown. However, the four-fold shell filling of the left
dot is clearly visible in this honeycomb pattern, from which we can identify filled shells
when (N, N +4, etc.). (b) Characteristic ”honeycomb” structure of the current for the
double dot in the weakly coupled regime (TGL = TGR = 0 V, TGM = 200 mV). The
triple points with excited states are visible at the applied high bias of VSD = 5 mV.
From the size of the triangles and the hexagons, all capacitances that characterize the
double dot can be calculated.

overlapping triangles [26]. Excited states are observed in every triple point. In

the appendix we show measurements on a different nanotube double dot in figure

3 to demonstrate reproducibility.

All capacitances [26] that characterize the double quantum dot are calculated

from the size of the hexagons and triple points in Figure 5: The capacitive cou-

pling between the dots is CTGM = 1 aF, the total capacitances of the left and

right dot are CL = 7.2 aF and CR = 12.5 aF, respectively, and the relative ca-

pacitances between each side-gate and its neighboring dot are CSGL = 3 aF and

CSGR = 1.5 aF.
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We obtain tunnel barriers even for zero or small top-gate voltages for certain

gate regions. This indicates that the fabrication of the local top-gates alone

induces a small barrier. A small co-tunneling current is visible in the upper right

area of Figure 5 which shows up as lines linking the triple points. The fact that

there is no co-tunneling current in the rest of the figure shows that the tunnel

barriers change while changing the side-gate voltages and that there are cross

capacitances between the gates.

A high resolution measurement of a pair of triple points (electron- and hole-

cycle) is shown in Figure 6 for VSD = 4 mV. At the baseline of the triangle the

ground states of the two dots are aligned and shifted together from the Fermi-

level of the drain (point a in Figure 6) to the Fermi-level of the source (point b).

At the center of the baseline they lie exactly in the middle between source and

drain. On a line from this point to the tip of the triangle (point c), the states

of the right dot are shifted downwards to the Fermi-level of the source, while the

states of the left dot shift upwards to the drain (a positive bias is applied at the

source contact, while the drain contact is put to ground). Along this line, we see

sharp excitations at 0.33, 1.24, 1.55, and 1.8 mV (see inset of Figure 6). These

lines belong to different excited states of the left dot which are probed by states

of the right dot. An area of non-resonant current spreads between 2 and 2.8 mV.

In figure 2 of the appendix we show data for an adjacent pair of triple points.

The excited states for both pairs are consistent.

In the following we give a possible scenario for the resonant transport. Af-

terwards, we discuss the non-resonant current. On the right side of the triangles

of both triple points there appears to be a region of strongly suppressed current.

This feature could be explained by bad coupling of the ground state of the right

dot to the source. As the levels of the dots move upwards with lowering the side-

gate voltages, at point (*) the first hole-excited state [27] of the right dot enters

the bias window at ∼ 650µeV. The coupling of this level to the source contact is

stronger, thus enhancing the current.

The lines parallel to the baseline of the triangle belong to resonant transport

through hole-excited states of the left dot. Only the first of these excited states

at ∼ 330µeV is probed by the ground state of the right dot (point e). At the

other lines, the excited state of the right dot at ∼ 650µeV is aligned with the

excited states of the left dot (see point f as an example). This could also explain

the larger current through these lines, as the excited states are probably better

coupled to the contacts. Taking this into account, the energy splitting of the

second excited state (**) of the left dot to its ground state is 1.9 meV. This

fits well with the value for the level splitting we obtained from the single dot

measurement. The next two lines split by 310 and 560 µeV with respect to the
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Figure 8.5: Current versus side gate voltages for a typical example for a triple point
at high bias (VSD = 4 mV) in the p-doped region (hole transport). The ground state
tunneling is weaker then tunneling through excited states. Lines parallel to the base
(point a to point b) of a triangle belong to tunneling through excited states of the left
dot, while the right dot excited states show up parallel to the upper-right side of the
triangle (the first one enters the bias window at point (*)). The inset shows a line cut
from the center of the base of the upper triangle to the triangle tip (black line from
point d to point c), i.e., current as a function of the detuning between levels. The level
schemes of the double dot corresponding to the points a to f depicted in the triangle
are shown on the right side of the figure. Grey lines represent the ground states, black
lines hole-excited states (the measurement is done in the p-doped region). The dashed
lines belong to the next excited states corresponding to (**).

level (**) at ∆. Like the first one at ∼ 330µeV (point e) they are comparable in

size with the low energy splitting found in the single dot measurement of the left

QD.

Non-resonant transport can occur if an electron looses energy due to spon-

taneous emission of an acoustic phonon [28]. However, we do not observe the
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expected decay of the current for one-dimensional acoustic phonons with detun-

ing of the DQD states. The non-resonant current between 2 mV and 2.8 mV

seems to have its origin rather in level broadening of excited states at higher

energy.

Electron-phonon coupling in a molecule such as a CNT can show up as sharp

resonance lines. These would be equidistant with an energy difference that de-

pends on the diameter and length of the tube [29]. For a length of 2 µm, an energy

difference of Ephonon ∼ 55µeV is expected. If the size of the single QDs of 500 nm

would determine the energy of the phonons, one would expect Ephonon ∼ 440µeV.

None of these energy scales show up in the lines inside the triangle. Thus we

conclude that the lines inside the triangle are due to resonant transport through

electronic excitations.

In this letter we have demonstrated the full tunability of a carbon nanotube

double quantum dot. We avoid covering the whole tube with an oxide layer by

fabricating narrow AlOx/Al top gates, and by that disturbing the structure of

the carbon nanotube as little as possible. In this way, we are able to show Fabry-

Perot interference between the source/drain contacts in a SWCNT structure with

top-gates. The typical four-fold shell filling of a small band gap tube and excited

states are visible in the stability diagram of the left dot. This shows that we are

able to fabricate tunable barriers for carbon nanotube quantum dots, which is

essential for spin relaxation time measurements [30, 31]. The shell filling of the

single dot is also visible in the hexagon pattern of the double quantum dot. The

excited states of both dots show up as resonant tunneling lines in the triple points.

This paves the way for new microwave-based quantum information processing

experiments with carbon nanotubes.
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facilities. This work was supported by the Defense Advanced Research Projects

Agency Quantum Information Science and Technology program, the Dutch Or-
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Figure 8.6: Conductance as a function of the left side-gate voltage (SGL) at 4K is
shown for different central top-gate values and with a fixed voltage of -2V on the back-
gate showing p- and n-type behaviour. In the inset we show the conductance as a
function of the back-gate voltage, while all other gates are grounded, in the p-region.

We provide additional measurements in the supplementary information. First

we show in Fig. 8.6 a measurement of the conductance as a function of the left

side-gate for different central top-gate values. The peak position moves to lower

gate voltage values, as expected, and also the first peak height decreases, which

indicates that we influence the tunnel barrier. In figure 8.7, we focus on a pair

of triple points adjacent to the pair of Fig. 8.5. The total charge in this case

N -1 holes in the left and M holes in right dot (the situation in the paper is N

and M number of holes in the dots). In the subfigures different alignment of

levels are shown for the situations indicated in the main figure. We find that the

excited state of the right dot is practically the same as obtained from Fig. 8.5.

This is as expected. For the excited states of the left we find different values

for the different cases. Since the number of charges in the left dot is different

for the two situations (Fig. 8.5 and Fig. 8.7) it is expected to have a different

excited state spectrum for both cases. Finally, in Fig.8.8 we show measurements

on a different nanotube double dot sample to demonstrate reproducibility. In

the different figures we show that we can operate the sample in different double

dot regimes: weak- and strong-tunnel coupled regimes. Furthermore we present

a zoom-in of a pair of triple points where the excited states are resolved.
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Figure 8.7: Triple point with (n-1) holes in left dot and same number of holes in
right dot compared to the triple point in Fig. 8.5. A bias voltage of 4 mV is applied
and the top-gates are grounded for this measurement. The inset shows the current
as a function of the detuning between ground state levels (solid line in triple point).
Level schemes corresponding to three of the current peaks are shown on the right. We
obtain a level splitting of 700 ± 60 µeV for the right dot from these data. There is one
more excited state visible in the first orbital of the left dot. The first state is found at
320 µeV, the second at ∼580 µeV. The next peak corresponds to situation b: The next
orbital excited state of the left dot is aligned with the excited state of the right dot.
This leads again to an orbital splitting of ∼1.9 meV. The low energy excited states for
the next orbital are not resolved due to the higher non-resonant current. The last peak
corresponds more likely to situation c, as the splitting to b is ∼650 µeV.
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Figure 8.8: We show measurements on a different nanotube double quantum dot with
a length of 500 nm for both the left and right dot. We apply a source drain bias voltage
of -1 mV for (a), (b) and a bias of -3 mV for (c). The central top-gate is set to -1.5
V. The current is plotted in color scale. In (a) the double dot is in the strong tunnel-
coupling regime and a clear honeycomb pattern is visible. In (b) the triple points are
clearly visible and the double dot is in the weak tunnel-coupling regime. In contrast to
conventional GaAs quantum dots we do not have to retune the barriers to observe the
double dot behaviour over a large side-gate voltage range. In (c) we show a zoom-in of
a pair of triple points where excited states are clearly resolved. Note that the current
only flows when discrete levels are aligned.



106

Chapter 8. Excited state spectroscopy in carbon nanotube double quantum

dots



Summary

Carbon nanotube quantum dots

Low temperature electron transport measurements on individual single wall

carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow

cylinders made entirely out of carbon atoms. At low temperatures (below ∼ 10 K)

finite length nanotubes form quantum dots. Because of its small size a quantum

dot has a discrete set of energy levels where electrons can be placed. Therefore,

it resembles an atom in many aspects. The research presented here focuses on

understanding the behavior of nanotube quantum dots.

Until recently, we have fabricated nanotube quantum dots by just evaporating

metal contacts on top of the nanotube segments. This way tunnelbarriers develop

naturally at the nanotube-metal interfaces.

The addition of a single electron requires a considerable energy due to the

small size of the nanotube. At low temperatures this energy is absent, and the

nanotube quantum dot is then in the ‘Coulomb blockade’ regime. Applying a

bias voltage between the electrodes or changing the electrostatic potential of the

quantum dot by a voltage on a nearby gate can lift the Coulomb blockade and

hence allow single electron tunneling processes through the barriers. By mea-

suring the current going through the nanotube we study the electron transport

behavior of the nanotube quantum dot.

We are primarily focussed on nanotube quantum dots in the ’closed’ quantum

dot regime. In this regime the tunnelbarriers are very opaque and the electrons

are strongly confined in the quantum dot. Also, the energy width are sharply

defined allowing for accurate spectroscopy measurements.

In chapter 4 we report the first observation of the discrete energy spectrum of

semiconducting nanotubes. Furthermore, the semiconducting nanotube quantum

dot can be completely depleted from free charge carriers. Electrons or holes

could be added one by one. This permits us to compare the excitation spectra

for electrons and holes. We find that they are symmetric, as expected from the

symmetry in the bandstructure.

The energy spectra of metallic nanotubes in the closed quantum dot regime
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are explained in chapter 5. Using a model, which extends the ‘constant inter-

action model’ with exchange interaction effects and the orbital degeneracy of

the nanotube bandstructure, the full measured energy spectrum of the nanotube

quantum dot is identified and accounted for.

Of recent interest in the field of nanoscience is the interplay between electrical

and mechanical properties. In a theoretical study we predict that the tunneling

of a single electron onto a suspended nanotube drastically modifies the quantized

vibrational eigenmodes due to the electrostatic forces which bend and tension the

nanotube.

Measurements performed on quantum dots in freely suspended nanotube at

low temperatures shows a small, harmonic excitation spectrum, which can not be

identified with purely electronic excitations. We propose phonon assisted tunnel-

ing to be responsible for these excitations. Using a Franck-Condon based model,

in which the phonon assisted tunneling processes are modeled as a coupling of

electronic levels to underdamped quantum harmonic oscillators, we find good

agreement with the measurements.

Lately, the emphasis of carbon nanotube quantum dot research is shifting

towards defining nanotube quantum dots with tunable barriers. In the last chap-

ter we present a fabrication procedure for defining nanotube quantum dots with

controllable barriers. This way it was possible to extend the system to form a

double quantum dot. This last step was highly motivated by the possibility that

double quantum dot systems could act as a solid state quantum bit. We perform

transport measurements on the nanotube double quantum dot and observe the

excited states of the systems. This opens up new possibilities for fundamental

and applied studies on nanotube quantum dots.

Sami Sapmaz

May 2006
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Koolstof nanobuis kwantum dots

Lage temperatuur elektron transport metingen aan enkel wandige koolstof

nanobuisjes zijn beschreven in dit proefschrift. Deze buisjes zijn kleine holle

cilinders die uitsluitend uit koolstof atomen bestaan. Eindig lange nanobuizen

vormen bij lage temperaturen (onder ∼ 10K) vormen kwantum dots. Vanwege

zijn kleine afmetingen heeft een kwantum dot een discrete set van energie niveaus

waarin elektronen geplaatst kunnen worden. Derhalve vertoont het in vele as-

pecten een gelijkenis met atomen. Het onderzoek dat hierin beschreven is richt

zich op het begrijpen van kwantum dots in koolstof nanobuis.

Tot voor kort, hebben we de koolstof nanobuis kwantum dots gefabriceerd

door metalen contacten bovenop nanobuis segementen te dampen. Op deze wijze

vormen tunnelbarrières zich op een natuurlijke manier aan het nanobuis-metaal

raakvlak.

De additie van een enkel elektron vergt een aanzienlijke energie vanwege de

kleine afmetingen van de nanobuis. Bij lage temperaturen is deze energie afwezig

en de nanobuis kwantum dot is dan in het ‘Coulomb blokkade’ regime. Door een

‘bias’ voltage tussen de elektroden of door het veranderen van de elektrostatische

potentiaal van de kwantum dot kunnen we de Coulomb blokkade opheffen en

derhalve enkel elektron tunnel processen door de barrières toestaan. Door het

meten van de stroom door de nanobuis bestuderen wij het elektron transport

gedrag van de nanobuis kwantum dot.

Wij zijn hoofdzakelijk gëınteresseerd in nanobuis kwantum dots in het ‘ges-

loten’ kwantum dot regime. In dit regime zijn de tunnelbarrières erg hoog en de

elekronen zijn goed opgesloten in de kwantum dot. Ook is de breedte van energie

niveaus scherp gedefinieerd en is het mogelijk om nauwkeurig spectroscopische

metingen te verrichten.

In hoofdstuk 4 rapporteren we de eerste observatie van diskrete energie spectra

van halfgeleidende nanobuizen. Bovendien kunnen de vrije ladingsdragers uit de

kwantum dot in de halfgeleidende nanobuis worden geduwd. Elektronen en gaten

kunnen één voor één bijgeplaatst worden. Dit geeft ons de mogelijkheid om de
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excitatiespectra voor elektronen en gaten te vergelijken. We constateren dat ze

symmetrisch zijn, zoals verwacht van de symmetrie in de bandstructuur.

De energiespectra van metallische nanobuizen in het gesloten kwantum dot

regime worden uitgelegd in hoofdstuk 5. Met een model, dat het ‘constante

interactie model’ uitbreidt met wisselwerkingseffecten en de orbitale ontaarding

van de nanobuis bandstructuur, kon het gehele gemeten energiespectrum van de

nanobuis kwantum dot gëıdentificeerd en verklaard worden.

Van actuele interesse in het vakgebied van nanoscience is het samenspel tussen

elektrische en mechanische eigenschappen. In een theoretische studie voorspellen

we dat het tunnelen van een enkel elektron op een vrij opgehangen nanobuis

de gekwantiseerde eigentoestanden drastisch verandert via de elektrostatische

krachten die de nanobuis buigen en spannen.

Metingen verricht aan kwantum dots in vrij opgehangen nanobuizen bij lage

temperaturen tonen een laag, harmonisch excitatiespectrum dat niet met elec-

tronische excitaties worden gëıdentificeerd. We stellen phonon geassisteerd tun-

nelen voor als verantwoordelijk voor deze excitaties. Gebruik makend van een

Franck-Condon gebaseerd model, waarin de phonon geassisteerde tunnel pro-

cessen gemodelleerd zijn als een koppeling van elektronische niveaus met on-

dergedempte kwantum harmonische oscillatoren, vinden we goed overeenstem-

ming met de metingen.

Recentelijk verschuift de nadruk van koolstof nanobuis kwantum dot onder-

zoek naar het definiëren van koolstof nanobuis kwantum dots met afstembare

tunnelbarriéres. In het laatste hoofstuk presenteren we een fabricage procedure

for het definiëren van nanobuis kwantum dots met controleerbare barriéres. Zo

was het mogelijk om het systeem uit te breiden tot een dubbele kwantum dot.

Deze stap was gemotiveerd door de mogelijkheid dat dubbele kwantum dots sys-

temen als een vaste stof kwantum bit kunnen worden gebruikt. We voeren trans-

port metingen uit aan deze dubbele dots en nemen geëxciteerde toestanden waar.

Dit opent nieuwe mogelijkheden voor fundamenteel en toegepast onderzoek aan

kwantum dots.

Sami Sapmaz

mei 2006
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